We report on the observation of a fine structure in ion tracks in amorphous SiO2 using small angle x-ray scattering measurements. Tracks were generated by high energy ion irradiation with Au and Xe between 27 MeV and 1.43 GeV. In agreement with molecular dynamics simulations, the tracks consist of a core characterized by a significant density deficit compared to unirradiated material, surrounded by a high density shell. The structure is consistent with a frozen-in pressure wave originating from the center of the ion track as a result of a thermal spike.
Swift heavy-ion irradiation of elemental metal nanoparticles (NPs) embedded in amorphous SiO 2 induces a spherical to rodlike shape transformation with the direction of NP elongation aligned to that of the incident ion. Large, once-spherical NPs become progressively more rodlike while small NPs below a critical diameter do not elongate but dissolve in the matrix. We examine this shape transformation for ten metals under a common irradiation condition to achieve mechanistic insight into the transformation process. Subtle differences are apparent including the saturation of the elongated NP width at a minimum sustainable, metal-specific value. Elongated NPs of lesser width are unstable and subject to vaporization. Furthermore, we demonstrate the elongation process is governed by the formation of a molten ion-track in amorphous SiO 2 such that upon saturation the elongated NP width never exceeds the molten ion-track diameter. Ion-solid interactions during swift heavy-ion irradiation (SHII) are dominated by inelastic processes in the form of electron excitation and ionization while, in contrast, the influence of elastic processes such as ballistic displacements is negligible. Macroscopically, amorphous SiO 2 (a-SiO 2 ) undergoes a volume-conserving anisotropic deformation when subjected to SHII such that thin freestanding layers contract and expand, respectively, in directions parallel and perpendicular to that of the incident ion [1]. The viscoelastic model [2,3], based on a transient thermal effect, successfully explains this so-called ion hammering. Microscopically, energy is deposited along the ion path, from incident ion to matrix electrons, and is then dissipated within a narrow cylinder of material surrounding the ion path. The heat flow in both the electron and lattice subsystems is well described as functions of time and radial distance by the inelastic thermal spike (i-TS) model [4,5]. When the temperature of the lattice exceeds that required for melting, the material along the ion path is molten and upon quenching an ion track is formed. Recently, we measured the molten ion-track diameter in a-SiO 2 as a function of electronic stopping power [6]. The ion-track radial density distribution consisted of an under-dense core and over-dense shell (relative to unirradiated material), the formation of which was attributed to a quenched-in pressure wave emanating from the ion-track center [6].Elemental metal nanoparticles (NPs) embedded in a-SiO 2 and subjected to SHII can undergo an intriguing shape transformation where once-spherical NPs become progressively more rodlike with the direction of elongation aligned along that of the incident ion. This phenomenon has been reported for several metals under a wide range of SHII conditions, with Refs. [7][8][9][10][11][12][13][14][15][16][17] citing selected examples. Freestanding metallic NPs irradiated under comparable conditions do not change shape, demonstrating the embedding a-SiO 2 matrix must have a role in the shape transformation process [8,17]. An unambiguous ...
Pt nanoparticles ͑NPs͒ formed by ion-beam synthesis in amorphous SiO 2 were irradiated with Au ions in the energy range of 27-185 MeV. Small-angle x-ray scattering ͑SAXS͒ and transmission electron microscopy were used to characterize an irradiation-induced shape transformation within the NPs. A simple yet effective way of analyzing the SAXS data to determine both NP dimensions is presented. A transformation from spherical to rodlike shape with increasing irradiation fluence was observed for NPs larger than an energy-dependent threshold diameter, which varied from 4.0 to 6.5 nm over 27-185 MeV. NPs smaller than this threshold diameter remained spherical upon irradiation but decreased in size as a result of dissolution. The latter was more pronounced for the smallest particles. The minor dimension of the transformed NPs saturated at an energydependent value comparable to the threshold diameter for elongation. The saturated minor dimension was less than the diameter of the irradiation-induced molten track within the matrix. We demonstrate that Pt NPs of diameter 13 nm reach saturation of the minor dimension beyond a total-energy deposition into the matrix of 20 keV/ nm 3 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.