Abstract. We introduce ACCESS-OM2, a new version of the ocean–sea ice model of the Australian Community Climate and Earth System Simulator.
ACCESS-OM2 is driven by a prescribed atmosphere (JRA55-do) but has been designed to form the ocean–sea ice component of the fully coupled (atmosphere–land–ocean–sea ice) ACCESS-CM2 model.
Importantly, the model is available at three different horizontal resolutions: a coarse resolution (nominally 1∘ horizontal grid spacing), an eddy-permitting resolution (nominally 0.25∘), and an eddy-rich resolution (0.1∘ with 75 vertical levels); the eddy-rich model is designed to be incorporated into the Bluelink operational ocean prediction and reanalysis system.
The different resolutions have been developed simultaneously, both to allow for testing at lower resolutions and to permit comparison across resolutions.
In this paper, the model is introduced and the individual components are documented.
The model performance is evaluated across the three different resolutions, highlighting the relative advantages and disadvantages of running ocean–sea ice models at higher resolution.
We find that higher resolution is an advantage in resolving flow through small straits, the structure of western boundary currents, and the abyssal overturning cell but that there is scope for improvements in sub-grid-scale parameterizations at the highest resolution.
Full three-dimensional diffuse scattering data have been recorded for both polymorphic forms [(I) and (II)] of aspirin and these data have been analysed using Monte Carlo computer modelling. The observed scattering in form (I) is well reproduced by a simple harmonic model of thermally induced displacements. The data for form (II) show, in addition to thermal diffuse scattering (TDS) similar to that in form (I), diffuse streaks originating from stacking fault-like defects as well as other effects that can be attributed to strain induced by these defects. The present study has provided strong evidence that the aspirin form (II) structure is a true polymorph with a structure quite distinct from that of form (I). The diffuse scattering evidence presented shows that crystals of form (II) are essentially composed of large single domains of the form (II) lattice with a relatively small volume fraction of intrinsic planar defects or faults comprising misoriented bilayers of molecular dimers. There is evidence of some local aggregation of these defect bilayers to form small included regions of the form (I) structure. Evidence is also presented that shows that the strain effects arise from the mismatch of molecular packing between the defect region and the surrounding form (II) lattice. This occurs at the edges of the planar defects in the b direction only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.