Explaining the Late Pleistocene demise of many of the world's larger terrestrial vertebrates is arguably the most enduring and debated topic in Quaternary science. Australia lost >90% of its larger species by around 40 thousand years (ka) ago, but the relative importance of human impacts and increased aridity remains unclear. Resolving the debate has been hampered by a lack of sites spanning the last glacial cycle. Here we report on an exceptional faunal succession from Tight Entrance Cave, southwestern Australia, which shows persistence of a diverse mammal community for at least 100 ka leading up to the earliest regional evidence of humans at 49 ka. Within 10 millennia, all larger mammals except the gray kangaroo and thylacine are lost from the regional record. Stable-isotope, charcoal, and small-mammal records reveal evidence of environmental change from 70 ka, but the extinctions occurred well in advance of the most extreme climatic phase. We conclude that the arrival of humans was probably decisive in the southwestern Australian extinctions, but that changes in climate and fire activity may have played facilitating roles. One-factor explanations for the Pleistocene extinctions in Australia are likely oversimplistic.
Differentiating between ancient and younger, more rapidly evolved clades is important for determining paleoenvironmental drivers of diversification. Australia possesses many aridity-adapted lineages, the origins of which have been closely linked to late Miocene continental aridification. Using dental macrowear and molar crown height measurements, spanning the past 25 million years, we show that the most iconic Australian terrestrial mammals, “true” kangaroos (Macropodini), adaptively radiated in response to mid-Pliocene grassland expansion rather than Miocene aridity. In contrast, low-crowned, short-faced kangaroos radiated into predominantly browsing niches as the late Cenozoic became more arid, contradicting the view that this was an interval of global browser decline. Our results implicate warm-to-cool climatic oscillations as a trigger for adaptive radiation and refute arguments attributing Pleistocene megafaunal extinction to aridity-forced dietary change.
Teeth were an important innovation in vertebrate evolution but basic aspects of early dental evolution remain poorly understood. Teeth differ from other odontode organs, like scales, in their organized, sequential pattern of replacement. However, tooth replacement patterns also vary between the major groups of jawed vertebrates. Although tooth replacement in stem-osteichthyans and extant species has been intensively studied it has been difficult to resolve scenarios for the evolution of osteichthyan tooth replacement because of a dearth of evidence from living and fossil sarcopterygian fishes. Here we provide new anatomical data informing patterns of tooth replacement in the Devonian sarcopterygian fishes Onychodus, Eusthenopteron and Tiktaalik and the living coelacanth Latimeria based on microfocus- and synchrotron radiation-based X-ray microtomography. Early sarcopterygians generated replacement teeth on the jaw surface in a pattern similar to stem-osteichthyans, with damaged teeth resorbed and replacement teeth developed on the surface of the bone. However, resorption grades and development of replacement teeth vary spatially and temporally within the jaw. Particularly in Onychodus, where teeth were also shed through anterior rotation and resorption of bone at the base of the parasymphyseal tooth whorl, with new teeth added posteriorly. As tooth whorls are also present in more stem-osteichthyans, and statodont tooth whorls are present among acanthodians (putative stem-chondrichthyans), rotational replacement of the anterior dentition may be a stem-osteichthyan character. Our results suggest a more complex evolutionary history of tooth replacement.
Dental microwear texture analysis (DMTA) quantifies microscopic scar or wear patterns left on teeth by different foods or extraneous ingested items such as grit. It can be a powerful tool for deducing the diets of extinct mammals. Here we investigate how intraspecific variation in the dental microwear of macropodids (kangaroos and their close relatives) can be used to maximize the dietary signal inferable from an inherently limited fossil record. We demonstrate significant intraspecific variation for every factor considered here for both scale-sensitive fractal analysis and International Organization for Standardization surface texture analysis variables. Intraspecific factors were then incorporated into interspecific (dietary) analyses through the use of Linear Mixed Effects modelling, incorporating Akaike's Information Criterion to compare models, and testing models through independent cross-validation. This revealed that for each DMTA variable only a small number of intraspecific factors need to be included to improve differentiation between species. Including specimen as a random factor accounted for stochastic inter-individual variation, and facet , incorporated effects of sampling location. Intraspecific effects of ecoregion, microscope, tooth position and wear were often but not universally important. We conclude that models of microwear data that include intraspecific variation can improve the resolution of dietary reconstructions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.