Background: Reliable and consistent methods are required for the identification and classification of freshwater snails belonging to the genus Bulinus (Gastropoda, Planorbidae) which act as intermediate hosts for schistosomes of both medical and veterinary importance. The current project worked towards two main objectives, the development of a cost effective, simple screening method for the routine identification of Bulinus isolates and the use of resultant sequencing data to produce a model of relationships within the group.
Summary Background Schistosomiasis is a neglected tropical disease of global medical and veterinary importance. As efforts to eliminate schistosomiasis as a public health problem and interrupt transmission gather momentum, the potential zoonotic risk posed by livestock Schistosoma species via viable hybridisation in sub-Saharan Africa have been largely overlooked. We aimed to investigate the prevalence, distribution, and multi-host, multiparasite transmission cycle of Haematobium group schistosomiasis in Senegal, West Africa. Methods In this epidemiological study, we carried out systematic surveys in definitive hosts (humans, cattle, sheep, and goats) and snail intermediate hosts, in 2016–18, in two areas of Northern Senegal: Richard Toll and Lac de Guiers, where transmission is perennial; and Barkedji and Linguère, where transmission is seasonal. The occurrence and distribution of Schistosoma species and hybrids were assessed by molecular analyses of parasitological specimens obtained from the different hosts. Children in the study villages aged 5–17 years and enrolled in school were selected from school registers. Adults (aged 18–78 years) were self-selecting volunteers. Livestock from the study villages in both areas were also randomly sampled, as were post-mortem samples from local abattoirs. Additionally, five malacological surveys of snail intermediate hosts were carried out at each site in open water sources used by the communities and their animals. Findings In May to August, 2016, we surveyed 375 children and 20 adults from Richard Toll and Lac de Guiers, and 201 children and 107 adults from Barkedji and Linguère; in October, 2017, to January, 2018, we surveyed 386 children and 88 adults from Richard Toll and Lac de Guiers, and 323 children and 85 adults from Barkedji and Linguère. In Richard Toll and Lac de Guiers the prevalence of urogenital schistosomiasis in children was estimated to be 87% (95% CI 80–95) in 2016 and 88% (82–95) in 2017–18. An estimated 63% (in 2016) and 72% (in 2017–18) of infected children were shedding Schistosoma haematobium–Schistosoma bovis hybrids. In adults in Richard Toll and Lac de Guiers, the prevalence of urogenital schistosomiasis was estimated to be 79% (52–97) in 2016 and 41% (30–54) in 2017–18, with 88% of infected samples containing S haematobium–S bovis hybrids. In Barkedji and Linguère the prevalence of urogenital schistosomiasis in children was estimated to be 30% (23–38) in 2016 and 42% (35–49) in 2017–18, with the proportion of infected children found to be shedding S haematobium–S bovis hybrid miracidia much lower than in Richard Toll and Lac de Guiers (11% in 2016 and 9% in 2017–18). In adults in Barkedji and Linguère, the prevalence of urogenital schistosomiasis was estimated to be 26% (17–36) in 2016 and 47% (34–...
We present a novel approach to investigating sibling relationships and reconstructing parental genotypes from a progeny array. The Bayesian method we have employed is flexible and may be applicable to a variety of situations in addition to the one presented here. While mutation rates and breeding population allele frequencies can be taken into account, the model requires relatively few loci and makes few assumptions. Paternity of 270 veined squid (Loligo forbesi) hatchlings from three egg strings collected from one location was assigned using five microsatellite loci. Paternal and maternal genotypes reconstructed for each of the three strings were identical, strongly indicating that a single female produced the strings that were fertilized by the same four males. The proportion of eggs fertilized was not equal between males in all three strings, with male 1 siring most offspring (up to 68% in string 1), through to male 4 siring the least (as low as 2.4% in string 1). Although temperature had a profound effect on incubation time, paternity did not affect this trait at 12 degrees C or 8 degrees C.
SUMMARYNon-availability of adult worms from living hosts remains a key problem in population genetic studies of schistosomes. Indirect sampling involving passage through laboratory animals presents significant ethical and practical drawbacks, and may result in sampling biases such as bottlenecking processes and/or host-induced selection pressures. The novel techniques reported here for sampling, storage and multi-locus microsatellite analysis of larval Schistosoma mansoni, allowing genotyping of up to 7 microsatellite loci from a single larva, circumvent these problems. The utility of these assays and the potential problems of laboratory passage, were evaluated using 7 S. mansoni population isolates collected from school-children in the Hoima district of Uganda, by comparing the associated field-collected miracidia with adult worms and miracidia obtained from a single generation in laboratory mice. Analyses of laboratory-passaged material erroneously indicated the presence of geographical structuring in the population, emphasizing the dangers of indirect sampling for population genetic studies. Bottlenecking and/or other sampling effects were demonstrated by reduced variability of adult worms compared to their parent field-collected larval samples. Patterns of heterozygote deficiency were apparent in the field-collected samples, which were not evident in laboratory-derived samples, potentially indicative of heterozygote advantage in establishment within laboratory hosts. Genetic distance between life-cycle stages in the majority of isolates revealed that adult worms and laboratory-passaged miracidia clustered together whilst segregating from field miracidia, thereby further highlighting the utility of this assay.
BackgroundSchistosomiasis in one of the most prevalent parasitic diseases, affecting millions of people and animals in developing countries. Amongst the human-infective species S. haematobium is one of the most widespread causing urogenital schistosomiasis, a major human health problem across Africa, however in terms of research this human pathogen has been severely neglected.Methodology/Principal FindingsTo elucidate the genetic diversity of Schistosoma haematobium, a DNA ‘barcoding’ study was performed on parasite material collected from 41 localities representing 18 countries across Africa and the Indian Ocean Islands. Surprisingly low sequence variation was found within the mitochondrial cytochrome oxidase subunit I (cox1) and the NADH-dehydrogenase subunit 1 snad1). The 61 haplotypes found within 1978 individual samples split into two distinct groups; one (Group 1) that is predominately made up of parasites from the African mainland and the other (Group 2) that is made up of samples exclusively from the Indian Ocean Islands and the neighbouring African coastal regions. Within Group 1 there was a dominance of one particular haplotype (H1) representing 1574 (80%) of the samples analyzed. Population genetic diversity increased in samples collected from the East African coastal regions and the data suggest that there has been movement of parasites between these areas and the Indian Ocean Islands.Conclusions/SignificanceThe high occurrence of the haplotype (H1) suggests that at some point in the recent evolutionary history of S. haematobium in Africa the population may have passed through a genetic ‘bottleneck’ followed by a population expansion. This study provides novel and extremely interesting insights into the population genetics of S. haematobium on a large geographic scale, which may have consequence for control and monitoring of urogenital schistosomiasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.