Cell-penetrating peptides (CPPs) are capable of transporting molecules to which they are tethered across cellular membranes. Unsurprisingly, CPPs have attracted attention for their potential drug delivery applications, but several technical hurdles remain to be overcome. Chief among them is the so-called ‘endosomal escape problem,’ i.e. the propensity of CPP-cargo molecules to be endocytosed but remain entrapped in endosomes rather than reaching the cytosol. Previously, a CPP fused to calmodulin that bound calmodulin binding site-containing cargos was shown to efficiently deliver cargos to the cytoplasm, effectively overcoming the endosomal escape problem. The CPP-adaptor, “TAT-CaM,” evinces delivery at nM concentrations and more rapidly than we had previously been able to measure. To better understand the kinetics and mechanism of CPP-adaptor-mediated cargo delivery, a real-time cell penetrating assay was developed in which a flow chamber containing cultured cells was installed on the stage of a confocal microscope to allow for observation ab initio. Also examined in this study was an improved CPP-adaptor that utilizes naked mole rat (Heterocephalus glaber) calmodulin in place of human and results in superior internalization, likely due to its lesser net negative charge. Adaptor-cargo complexes were delivered into the flow chamber and fluorescence intensity in the midpoint of baby hamster kidney cells was measured as a function of time. Delivery of 400 nM cargo was observed within seven minutes and fluorescence continued to increase linearly as a function of time. Cargo-only control experiments showed that the minimal uptake which occurred independently of the CPP-adaptor resulted in punctate localization consistent with endosomal entrapment. A distance analysis was performed for cell-penetration experiments in which CPP-adaptor-delivered cargo showing wider dispersions throughout cells as compared to an analogous covalently-bound CPP-cargo. Small molecule endocytosis inhibitors did not have significant effects upon delivery. The real-time assay is an improvement upon static endpoint assays and should be informative in a broad array of applications.
In a previous study, we observed an increase in the severity of cryptosporidial infection corresponding to decreased levels of short-chain fatty acids (SCFAs). Therefore, we decided to examine the effect of SCFAs on Cryptosporidium growth in human ileocecal adenocarcinoma (HTC-8) cells. HTC-8 cells were infected with 1 × 105 C. parvum oocysts. After 48 h of incubation with selected SCFAs, cells were fixed and labeled with monoclonal antibody directed to all intracellular stages, and the number of parasites was quantitated using a fluorescent microscope. Acetate, butyrate, propionate and valproate significantly inhibited growth, with an EC50 between 4 and 10 mM. Additionally, when combined, butyrate, acetate and propionate showed increased efficacy. Butyrate also inhibited growth when incubated with sporozoites prior to infection of host cell monolayers. In addition, we looked at possible mechanisms of action of inhibition. A combination of C. parvum infection and butyrate treatment led to increases in apoptosis and certain inflammatory cytokines. We conclude that acetate, propionate and butyrate have direct inhibitory activities in host cells against C. parvum, and butyrate can also affect sporozoite infectivity directly. While not preventing infection, SCFAs may help in keeping the infection low or in check.
Cell-penetrating peptides (CPPs) are capable of transporting molecules to which they are tethered across cellular membranes. Unsurprisingly, CPPs have attracted attention for their potential drug delivery applications, but several technical hurdles remain to be overcome. Chief among them is the so-called ‘endosomal escape problem,’ i.e. the propensity of CPP-cargo molecules to be endocytosed but remain entrapped in endosomes rather than reaching the cytosol. Previously, a CPP fused to calmodulin that bound calmodulin binding site-containing cargos was shown to efficiently deliver cargos to the cytoplasm, effectively overcoming the endosomal escape problem. The CPP-adaptor, “TAT-CaM,” evinces delivery at nM concentrations and more rapidly than we had previously been able to measure. To better understand the kinetics and mechanism of CPP-adaptor-mediated cargo delivery, a real-time cell penetrating assay was developed in which a flow chamber containing cultured cells was installed on the stage of a confocal microscope to allow for observation ab initio . Also examined in this study was an improved CPP-adaptor that utilizes naked mole rat ( Heterocephalus glaber ) calmodulin in place of human and results in superior internalization, likely due to its lesser net negative charge. Adaptor-cargo complexes were delivered into the flow chamber and fluorescence intensity in the midpoint of baby hamster kidney cells was measured as a function of time. Delivery of 400 nM cargo was observed within seven minutes and fluorescence continued to increase linearly as a function of time. Cargo-only control experiments showed that the minimal uptake which occurred independently of the CPP-adaptor resulted in punctate localization consistent with endosomal entrapment. A distance analysis was performed for cell-penetration experiments in which CPP-adaptor-delivered cargo showing wider dispersions throughout cells as compared to an analogous covalently-bound CPP-cargo. Small molecule endocytosis inhibitors did not have significant effects upon delivery. The real-time assay is an improvement upon static endpoint assays and should be informative in a broad array of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.