This paper presents new metrics to measure the effect of thermal mass on the energy required to heat and cool buildings. Previous studies have been flawed as they have not considered the interaction between intermittent occupancy and thermal mass, which has a significant impact on overall energy use. However, existing parameters do not adequately capture these effects, so the new metrics developed in this paper are used to analyse the impact of thermal mass in hot climates with active cooling, and cold climates with active heating. The results agree with existing literature that high thermal mass structures are likely to be effective in hot climates; however, in cold climates the drawbacks of high thermal mass likely outweigh the advantages, and high thermal mass can cause an increase in energy use. This finding has implications for the design of buildings in cold climates, and contradicts the commonly-held assumption that high thermal mass is correlated with low energy use. The new metrics (transient energy ratio and effective U-value) provide a generalisable method to quantify these effects. They are further used here to analyse the dynamic performance of heavily insulated buildings and show that high thermal mass often leads to higher energy use in cold climates.
This paper presents a finite element thermal model for similar and dissimilar alloy friction stir spot welding (FSSW). The model is calibrated and validated using instrumented lap joints in Al-Al and Al-Fe automotive sheet alloys. The model successfully predicts the thermal histories for a range of process conditions. The resulting temperature histories are used to predict the growth of intermetallic phases at the interface in Al-Fe welds. Temperature predictions were used to study the evolution of hardness of a precipitation-hardened aluminum alloy during post-weld aging after FSSW.
Abstract:The material flow in friction stir spot welding of aluminium to both aluminium and steel has been investigated, using pinless tools in a lap joint geometry. The flow behaviour was revealed experimentally using dissimilar Al alloys of similar strength. The effect on the material flow of tool surface features, welding conditions (rotation speed, plunge depth, dwell time), and the surface state of the steel sheet (un-coated or galvanized) have been systematically studied. A novel kinematic flow model is presented, which successfully predicts the observed layering of the dissimilar Al alloys under a range of conditions. The model and the experimental observations provide a consistent interpretation of the stickslip conditions at the tool-workpiece interface, addressing an elusive and long-standing issue in the modelling of heat generation in friction stir processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.