We study a class of fractional stochastic differential equations (FSDEs) with coefficients that may not satisfy the linear growth condition and non-Lipschitz diffusion coefficient. Using the Lamperti transform, we obtain conditions for positivity of solutions of such equations. We show that the trajectories of the fractional CKLS model with β>1 are not necessarily positive. We obtain the almost sure convergence rate of the backward Euler approximation scheme for solutions of the considered SDEs. We also obtain a strongly consistent and asymptotically normal estimator of the Hurst index H>1/2 for positive solutions of FSDEs.
In this paper we are interested in fractional stochactic differential equations (SDEs) with a soft wall. What do we mean by such a type of equation? It has been established that SDE with reflection can be imagined as equations having a hard wall. Now, by introducing repulsion instead of reflection, one obtains an SDE with a soft wall. In contrast to the SDE with reflection, where the process cannot pass the hard wall, the soft wall is repulsive but not impenetrable. As the process crosses the soft wall boundary, it experiences the force of a chosen magnitude in the opposite direction. When the process is far from the wall, the force acts weakly. We find conditions under which SDE with a soft wall has a unique solution and construct an implicit Euler approximation with a rate of convergence for this equation. Using the example of the fractional Vasicek process with soft walls, we illustrate the dependence of the behaviour of the solution on the repulsion force.
We investigate congruence relationships of particular finite sums involving generalized harmonic numbers. We suggest a simpler and more transparent method to analyse these sums and present several additional results for certain special cases.where r = σ + it is a complex variable. However, in the study of divisibility it is assumed that r is an integer.Consider the behaviour of finite sums of terms involving GHN in the form
Fractional stochastic differential equation (FSDE)-based random processes are used in a wide spectrum of scientific disciplines. However, in the majority of cases, explicit solutions for these FSDEs do not exist and approximation schemes have to be applied. In this paper, we study one-dimensional stochastic differential equations (SDEs) driven by stochastic process with Hölder continuous paths of order 1/2<γ<1. Using the Lamperti transformation, we construct a backward approximation scheme for the transformed SDE. The inverse transformation provides an approximation scheme for the original SDE which converges at the rate h2γ, where h is a time step size of a uniform partition of the time interval under consideration. This approximation scheme covers wider class of FSDEs and demonstrates higher convergence rate than previous schemes by other authors in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.