Stromal-derived intratumoural heterogeneity (ITH) has been shown to undermine molecular stratification of patients into appropriate prognostic/predictive subgroups. Here, using several clinically relevant colorectal cancer (CRC) gene expression signatures, we assessed the susceptibility of these signatures to the confounding effects of ITH using gene expression microarray data obtained from multiple tumour regions of a cohort of 24 patients, including central tumour, the tumour invasive front and lymph node metastasis. Sample clustering alongside correlative assessment revealed variation in the ability of each signature to cluster samples according to patient-of-origin rather than region-of-origin within the multi-region dataset. Signatures focused on cancer-cell intrinsic gene expression were found to produce more clinically useful, patient-centred classifiers, as exemplified by the CRC intrinsic signature (CRIS), which robustly clustered samples by patient-of-origin rather than region-of-origin. These findings highlight the potential of cancer-cell intrinsic signatures to reliably stratify CRC patients by minimising the confounding effects of stromal-derived ITH.
Colorectal cancer (CRC) biopsies underpin accurate diagnosis, but are also relevant for patient stratification in molecularly‐guided clinical trials. The consensus molecular subtypes (CMSs) and colorectal cancer intrinsic subtypes (CRISs) transcriptional signatures have potential clinical utility for improving prognostic/predictive patient assignment. However, their ability to provide robust classification, particularly in pretreatment biopsies from multiple regions or at different time points, remains untested. In this study, we undertook a comprehensive assessment of the robustness of CRC transcriptional signatures, including CRIS and CMS, using a range of tumour sampling methodologies currently employed in clinical and translational research. These include analyses using (i) laser‐capture microdissected CRC tissue, (ii) eight publically available rectal cancer biopsy data sets (n = 543), (iii) serial biopsies (from AXEBeam trial, NCT00828672; n = 10), (iv) multi‐regional biopsies from colon tumours (n = 29 biopsies, n = 7 tumours), and (v) pretreatment biopsies from the phase II rectal cancer trial COPERNCIUS (NCT01263171; n = 44). Compared to previous results obtained using CRC resection material, we demonstrate that CMS classification in biopsy tissue is significantly less capable of reliably classifying patient subtype (43% unknown in biopsy versus 13% unknown in resections, p = 0.0001). In contrast, there was no significant difference in classification rate between biopsies and resections when using the CRIS classifier. Additionally, we demonstrated that CRIS provides significantly better spatially‐ and temporally‐ robust classification of molecular subtypes in CRC primary tumour tissue compared to CMS (p = 0.003 and p = 0.02, respectively). These findings have potential to inform ongoing biopsy‐based patient stratification in CRC, enabling robust and stable assignment of patients into clinically‐informative arms of prospective multi‐arm, multi‐stage clinical trials. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Modern methods of acquiring molecular data have improved rapidly in recent years, making it easier for researchers to collect large volumes of information. However, this has increased the challenge of recognizing interesting patterns within the data. Atlas Correlation Explorer (ACE) is a userfriendly workbench for seeking associations between attributes in The Cancer Genome Atlas (TCGA) database. It allows any combination of clinical and genomic data streams to be searched using an evolutionary algorithm approach. To showcase ACE, we assessed which RNA sequencing transcripts were associated with estrogen receptor (ESR1) in the TCGA breast cancer cohort. The analysis revealed already well-established associations with XBP1 and FOXA1, but also identified a strong association with CT62, a potential immunotherapeutic target with few previous associations with breast cancer. In conclusion, ACE can produce results for very large searches in a short time and will serve as an increasingly useful tool for biomarker discovery in the big data era.Significance: ACE uses an evolutionary algorithm approach to perform large searches for associations between any combinations of data in the TCGA database.
Glioblastoma (GBM) is the most prevalent and aggressive adult brain tumor. Despite multi-modal therapies, GBM recurs, and patients have poor survival (~14 months). Resistance to therapy may originate from a subpopulation of tumor cells identified as glioma-stem cells (GSC), and new treatments are urgently needed to target these. The biology underpinning GBM recurrence was investigated using whole transcriptome profiling of patient-matched initial and recurrent GBM (recGBM). Differential expression analysis identified 147 significant probes. In total, 24 genes were validated using expression data from four public cohorts and the literature. Functional analyses revealed that transcriptional changes to recGBM were dominated by angiogenesis and immune-related processes. The role of MHC class II proteins in antigen presentation and the differentiation, proliferation, and infiltration of immune cells was enriched. These results suggest recGBM would benefit from immunotherapies. The altered gene signature was further analyzed in a connectivity mapping analysis with QUADrATiC software to identify FDA-approved repurposing drugs. Top-ranking target compounds that may be effective against GSC and GBM recurrence were rosiglitazone, nizatidine, pantoprazole, and tolmetin. Our translational bioinformatics pipeline provides an approach to identify target compounds for repurposing that may add clinical benefit in addition to standard therapies against resistant cancers such as GBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.