BackgroundPhysical activity has not been objectively measured in prospective cohorts with sufficiently large numbers to reliably detect associations with multiple health outcomes. Technological advances now make this possible. We describe the methods used to collect and analyse accelerometer measured physical activity in over 100,000 participants of the UK Biobank study, and report variation by age, sex, day, time of day, and season.MethodsParticipants were approached by email to wear a wrist-worn accelerometer for seven days that was posted to them. Physical activity information was extracted from 100Hz raw triaxial acceleration data after calibration, removal of gravity and sensor noise, and identification of wear / non-wear episodes. We report age- and sex-specific wear-time compliance and accelerometer measured physical activity, overall and by hour-of-day, week-weekend day and season.Results103,712 datasets were received (44.8% response), with a median wear-time of 6.9 days (IQR:6.5–7.0). 96,600 participants (93.3%) provided valid data for physical activity analyses. Vector magnitude, a proxy for overall physical activity, was 7.5% (2.35mg) lower per decade of age (Cohen’s d = 0.9). Women had a higher vector magnitude than men, apart from those aged 45-54yrs. There were major differences in vector magnitude by time of day (d = 0.66). Vector magnitude differences between week and weekend days (d = 0.12 for men, d = 0.09 for women) and between seasons (d = 0.27 for men, d = 0.15 for women) were small.ConclusionsIt is feasible to collect and analyse objective physical activity data in large studies. The summary measure of overall physical activity is lower in older participants and age-related differences in activity are most prominent in the afternoon and evening. This work lays the foundation for studies of physical activity and its health consequences. Our summary variables are part of the UK Biobank dataset and can be used by researchers as exposures, confounding factors or outcome variables in future analyses.
Digital health interventions (DHI) have enormous potential as scalable tools to improve health and healthcare delivery by improving effectiveness, efficiency, accessibility, safety and personalisation. Achieving these improvements requires a cumulative knowledge base to inform development and deployment of DHI. However, evaluations of DHI present special challenges. This paper aims to examine these challenges and outline an evaluation strategy in terms of the Research Questions (RQs) needed to appraise DHIs. As DHI are at the intersection of biomedical, behavioural, computing and engineering research, methods drawn from all these disciplines are required. Relevant RQs include defining the problem and the likely benefit of the DHI, which in turn requires establishing the likely reach and uptake of the intervention, the causal model describing how the intervention will achieve its intended benefit, key components and how they interact with one another, and estimating overall benefit in terms of effectiveness, cost-effectiveness and harms. While Randomised Controlled Trials (RCTs) are important for evaluation of effectiveness and cost-effectiveness, they are best undertaken only when: a) the intervention and its delivery package are stable; b) these can be implemented with high fidelity and c) there is a reasonable likelihood that the overall benefits will be clinically meaningful (improved outcomes or equivalent outcomes at less cost). Broadening the portfolio of RQs and evaluation methods will help with developing the necessary knowledge base to inform decisions on policy, practice and research.
Physical activity and sleep duration are established risk factors for many diseases, but their aetiology is poorly understood, partly due to relying on self-reported evidence. Here we report a genome-wide association study (GWAS) of device-measured physical activity and sleep duration in 91,105 UK Biobank participants, finding 14 significant loci (7 novel). These loci account for 0.06% of activity and 0.39% of sleep duration variation. Genome-wide estimates of ~ 15% phenotypic variation indicate high polygenicity. Heritability is higher in women than men for overall activity (23 vs. 20%, p = 1.5 × 10−4) and sedentary behaviours (18 vs. 15%, p = 9.7 × 10−4). Heritability partitioning, enrichment and pathway analyses indicate the central nervous system plays a role in activity behaviours. Two-sample Mendelian randomisation suggests that increased activity might causally lower diastolic blood pressure (beta mmHg/SD: −0.91, SE = 0.18, p = 8.2 × 10−7), and odds of hypertension (Odds ratio/SD: 0.84, SE = 0.03, p = 4.9 × 10−8). Our results advocate the value of physical activity for reducing blood pressure.
Current public health guidelines on physical activity and sleep duration are limited by a reliance on subjective self-reported evidence. Using data from simple wrist-worn activity monitors, we developed a tailored machine learning model, using balanced random forests with Hidden Markov Models, to reliably detect a number of activity modes. We show that physical activity and sleep behaviours can be classified with 87% accuracy in 159,504 minutes of recorded free-living behaviours from 132 adults. These trained models can be used to infer fine resolution activity patterns at the population scale in 96,220 participants. For example, we find that men spend more time in both low- and high- intensity behaviours, while women spend more time in mixed behaviours. Walking time is highest in spring and sleep time lowest during the summer. This work opens the possibility of future public health guidelines informed by the health consequences associated with specific, objectively measured, physical activity and sleep behaviours.
Technologic advances mean automated, wearable cameras are now feasible for investigating health behaviors in a public health context. This paper attempts to identify and discuss the ethical implications of such research, in relation to existing guidelines for ethical research in traditional visual methodologies. Research using automated, wearable cameras can be very intrusive, generating unprecedented levels of image data, some of it potentially unflattering or unwanted. Participants and third parties they encounter may feel uncomfortable or that their privacy has been affected negatively. This paper attempts to formalize the protection of all according to best ethical principles through the development of an ethical framework. Respect for autonomy, through appropriate approaches to informed consent and adequate privacy and confidentiality controls, allows for ethical research, which has the potential to confer substantial benefits on the field of health behavior research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.