Background: Reactive balance recovery evokes a negative peak of cortical electroencephalography (EEG) activity (N1) that is simultaneous to brainstem-mediated automatic balance-correcting muscle activity. This study follows up on an observation from a previous study, in which N1 responses were larger in individuals who seemed to have greater difficulty responding to support-surface perturbations. Research Question: We hypothesized that people engage more cortical activity when balance recovery is more challenging. We predicted that people with lower balance ability would exhibit larger cortical N1 responses during balance perturbations. Methods: In 20 healthy young adults (11 female, ages 19–38) we measured the amplitude of the cortical N1 response evoked by 48 backward translational support-surface perturbations of unpredictable timing and amplitude. Perturbations included a Small (8 cm) perturbation that was identical across participants, as well as Medium (13–15 cm) and Large (18–22 cm) perturbations scaled to participant height to control for height-related differences in perturbation difficulty. To assess individual differences in balance ability, we measured the distance traversed on a narrow (0.5-inch wide) 12-foot beam across 6 trials. We tested whether the cortical N1 response amplitude was correlated to balance ability across participants. Results: Cortical N1 amplitudes in response to standing balance perturbations (54 ± 18 μV) were inversely correlated to the distance traveled in the difficult beam-walking task (R 2 = 0.20, p = 0.029). Further, there was a significant interaction between performance on the beam-walking task and the effect of perturbation magnitude on the cortical N1 response amplitude, whereby individuals who performed worse on the beam-walking task had greater increases in N1 amplitudes with increases in perturbation magnitude. Significance: Cortical N1 response amplitudes may reflect greater cortical involvement in balance recovery when challenged. This increased cortical involvement may reflect cognitive processes such as greater perceived threat or attention to balance, which have the potential to influence subsequent motor control.
The role of cortical activity in standing balance is unclear. Here we tested whether perturbation-evoked cortical responses share sensory input with simultaneous balance-correcting muscle responses. We hypothesized that the acceleration-dependent somatosensory signals that drive the initial burst of the muscle automatic postural response also drive the simultaneous perturbation-evoked cortical N1 response. We measured in healthy young adults ( n = 16) the initial burst of the muscle automatic postural response (100–200 ms), startle-related muscle responses (100–200 ms), and the perturbation-evoked cortical N1 potential, i.e., a negative peak in cortical EEG activity (100–200 ms) over the supplementary motor area. Forward and backward translational support-surface balance perturbations were applied at four levels of acceleration and were unpredictable in timing, direction, and acceleration. Our results from averaged and single-trial analyses suggest that although cortical and muscle responses are evoked by the same perturbation stimulus, their amplitudes are independently modulated. Although both muscle and cortical responses increase with acceleration, correlations between single-trial muscle and cortical responses were very weak. Furthermore, across subjects, the scaling of muscle responses to acceleration did not correspond to scaling of cortical responses to acceleration. Moreover, we observed a reduction in cortical response amplitude across trials that was related to a reduction in startle-related—but not balance-correcting—muscle activity. Therefore, cortical response attenuation may be related to a reduction in perceived threat rather than motor adaptation or changes in sensory inflow. We conclude that the cortical N1 reflects integrated sensory inputs simultaneously related to brain stem-mediated balance-correcting muscle responses and startle reflexes. NEW & NOTEWORTHY Reactive balance recovery requires sensory inputs to be transformed into appropriate balance-correcting motor responses via brain stem circuits; these are accompanied by simultaneous and poorly understood cortical responses. We used single-trial analyses to dissociate muscle and cortical response modulation with perturbation acceleration. Although muscle and cortical responses share sensory inputs, they have independent scaling mechanisms. Attenuation of cortical responses with experience reflected attenuation of brain stem-mediated startle responses rather than the amplitude of balance-correcting motor responses.
Heightened reliance on the cerebral cortex for postural stability with aging is well-known, yet the cortical mechanisms for balance control, particularly in relation to balance function, remain unclear. Here we aimed to investigate motor cortical activity in relation to the level of balance challenge presented during reactive balance recovery and identify circuit-specific interactions between motor cortex and prefrontal or somatosensory regions in relation to metrics of balance function that predict fall risk. Using electroencephalography, we assessed motor cortical beta power, and beta coherence during balance reactions to perturbations in older adults. We found that individuals with greater motor cortical beta power evoked following standing balance perturbations demonstrated lower general clinical balance function. Individual older adults demonstrated a wide range of cortical responses during balance reactions at the same perturbation magnitude, showing no group-level change in prefrontal- or somatosensory-motor coherence in response to perturbations. However, older adults with the highest prefrontal-motor coherence during the post-perturbation, but not pre-perturbation, period showed greater cognitive dual-task interference (DTI) and elicited stepping reactions at lower perturbation magnitudes. Our results support motor cortical beta activity as a potential biomarker for individual level of balance challenge and implicate prefrontal-motor cortical networks in distinct aspects of balance control involving response inhibition of reactive stepping in older adults. Cortical network activity during balance may provide a neural target for precision-medicine efforts aimed at fall prevention with aging.
Cortical beta oscillations (13–30 Hz) reflect sensorimotor processing, but are not well understood in balance recovery. We hypothesized that sensorimotor cortical activity would increase under challenging balance conditions. We predicted greater beta power when balance was challenged, either by more difficult perturbations or by lower balance ability. In 19 young adults, we measured beta power over motor cortical areas (electroencephalography, Cz electrode) during three magnitudes of backward support -surface translations. Peak beta power was measured during early (50–150 ms), late (150–250 ms), and overall (0–400 ms) time bins, and wavelet-based analyses quantified the time course of evoked beta power. An ANOVA was used to compare peak beta power across perturbation magnitudes in each time bin. We further tested the association between perturbation-evoked beta power and individual balance ability measured in a challenging beam walking task. Beta power increased ~50 ms after perturbation, and to a greater extent in larger perturbations. Lower individual balance ability was associated with greater beta power in only the late (150–250 ms) time bin. These findings demonstrate greater sensorimotor cortical engagement under more challenging balance conditions, which may provide a biomarker for reduced automaticity in balance control that could be used in populations with neurological impairments.
The cortical N1 response to balance perturbation is observed in electroencephalography recordings simultaneous to automatic balance-correcting muscle activity. We recently observed larger cortical N1s in individuals who had greater difficulty resisting compensatory steps, suggesting the N1 may be influenced by stepping or changes in response strategy. Here, we test whether the cortical N1 response is influenced by stepping (planned steps vs. feet-in-place) or prior planning (planned vs. unplanned steps). We hypothesized that prior planning of a step would reduce the amplitude of the cortical N1 response to balance perturbations. In 19 healthy young adults (11 female, ages 19-38) we measured the cortical N1amplitude evoked by 48 backward translational support-surface perturbations of unpredictable timing and amplitude in a single experimental session. Participants were asked to plan a stepping reaction on half of perturbations, and to resist stepping otherwise. Perturbations included an easy (8 cm, 16 cm/s) perturbation that was identical across participants and did not naturally elicit compensatory steps, and a height-adjusted difficult (18-22 cm, 38-42 cm/s) perturbation that frequently elicited compensatory steps despite instructions to resist stepping. In contrast to our hypothesis, cortical N1 response amplitudes did not differ between planned and unplanned stepping reactions, but cortical responses were 11% larger with the execution of planned compensatory steps compared to nonstepping responses to difficult perturbations. These results suggest a possible role for the cortical N1 in the execution of compensatory steps for balance recovery, and this role is not influenced by whether the compensatory step was planned before the perturbation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.