The chick eye is able to change its refractive state by as much as 7 D by pushing the retina forward or pulling it back; this is effected by changes in the thickness of the choroid, the vascular tissue behind the retina and pigment epithelium. Chick eyes first made myopic by wearing diffusers and then permitted unrestricted vision developed choroids several times thicker than normal within days, thereby speeding recovery from deprivation myopia. Choroidal expansion does not occur when visual cues are reduced by dim illumination during the period of unrestricted vision. Furthermore, in chick eyes presented with myopic or hyperopic defocus by means of spectacle lenses, the choroid expands or thins, respectively, in compensation for the specific defocus imposed. Consequently, when the lenses are removed, the eye finds its refractive error suddenly of opposite sign, and the choroidal thickness again compensates by changing in the opposite direction. If a local region of the eye is made myopic by a partial diffuser and then given unrestricted vision, the choroid expands only in the myopic region. Although the mechanism of choroidal expansion is unknown, it might involve either a increased routing of aqueous humor into the uveoscleral outflow or osmotically generated water movement into the choroid. The latter is compatible with the increased choroidal proteoglycan synthesis either when eyes wear positive lenses or after diffuser removal.
Major depression is a prevalent emotion disorder. Chronic stressful life in genetically susceptible individuals is presumably a major etiology that leads to neuron and synapse atrophy in the limbic system. Molecular mechanisms underlying the pathological changes remain elusive. Mice were treated by chronic unpredictable mild stress (CUMS) until they demonstrated depression-like behavior. GABA release in the medial prefrontal cortex was evaluated by cell electrophysiology and imaging. Molecular profiles related to GABA synthesis and uptake were investigated by the high-throughput sequencings of microRNAs and mRNAs as well as western blot analysis in this cortical area. In CUMS-induced depression mice, there appear the decreases in the innervation and function of GABAergic axons and in the levels of mRNAs and proteins of glutamate decarboxylase-67, vesicular GABA transporter and GABA transporter-3. miRNA-15b-5p, miRNA-144-3p, miRNA-582-5p and miRNA-879-5p that directly downregulate such mRNAs increase in this cortex. Our results suggest that chronic mild stress impairs GABA release and uptake by upregulating miRNAs and downregulating mRNAs and proteins, which may constitute the subcellular and molecular mechanisms for the lowered GABA tone in major depression.
Quantitative Trait Loci (QTL) for oil content has been previously analyzed in a SG-DH population from a cross between a Chinese cultivar and a European cultivar of Brassica napus. Eight QTL with additive and epistatic effects, and with environmental interactions were evaluated. Here we present an integrated linkage map of this population predominantly based on informative markers derived from Brassica sequences, including 249 orthologous A. thaliana genes, where nearly half (112) are acyl lipid metabolism related genes. Comparative genomic analysis between B. napus and A. thaliana revealed 33 colinearity regions. Each of the conserved A. thaliana segments is present two to six times in the B. napus genome. Approximately half of the mapped lipid-related orthologous gene loci (76/137) were assigned in these conserved colinearity regions. QTL analysis for seed oil content was performed using the new map and phenotypic data from 11 different field trials. Nine significant QTL were identified on linkage groups A1, A5, A7, A9, C2, C3, C6 and C8, together explaining 57.79% of the total phenotypic variation. A total of 14 lipid related candidate gene loci were located in the confidence intervals of six of these QTL, of which ten were assigned in the conserved colinearity regions and felled in the most frequently overlapped QTL intervals. The information obtained from this study demonstrates the potential role of the suggested candidate genes in rapeseed kernel oil accumulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.