Non-small-cell lung cancer (NSCLC) is one of the most prevalent cancers worldwide. A Yi-Fei-San-Jie formula (YFSJF), widely used in NSCLC treatment in south China, has been validated in clinical studies. However, the pharmacological mechanism behind it remains unclear. In this study, 73 compounds were identified using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), with 58 enrolled in network pharmacology. The protein-protein interaction network, functional enrichment analysis, and compound-target-pathway network were constructed using 74 overlapping targets from 58 drugs and NSCLC. YFSJF has many targets and pathways in the fight against NSCLC. PIK3R1, PIK3CA, and AKT1 were identified as key targets, and the PI3K/AKT pathway was identified as the key pathway. According to the Human Protein Atlas (THPA) database and the Kaplan–Meier Online website, the three key targets had varying expression levels in normal and abnormal tissues and were linked to prognosis. Molecular docking and dynamics simulations verified that hub compounds have a strong affinity with three critical targets. This study revealed multiple compounds, targets, and pathways for YFSJF against NSCLC and suggested that YFSJF might inhibit PIK3R1, PIK3CA, and AKT1 to suppress the PI3K/AKT pathway and play its pharmacological role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.