Soluble human leukocyte antigen-G (sHLA-G) functions as a multiple immunoregulator. A 14 bp insertion (+14 bp)/deletion (-14 bp) polymorphism in exon 8 of the HLA-G gene has been proposed to be associated with HLA-G mRNA stability and the expression of HLA-G. In the current study, a total of 150 normal Chinese Han population had been genotyped for the +14 bp/-14 bp polymorphism, and the expression of plasma sHLA-G was determined with enzyme-linked immunosorbent assay in these case-matched plasma. Data showed that genotype of 14 bp polymorphism was significantly associated with sHLA-G expression. Plasma sHLA-G level with the +14 bp/+14 bp genotype was dramatically lower than that with +14 bp/-14 bp (P = 0.004) and -14 bp/-14 bp genotypes (P = 0.003), while no dramatic difference was observed between the +14 bp/-14 bp and -14 bp/-14 bp genotypes (P > 0.05). In both males and females, plasma sHLA-G with the +14 bp/+14 bp genotype was also significantly lower when compared with other two respective 14 bp genotypes. Data also showed that sHLA-G expression was unrelated to gender. This study suggests that the 14 bp deletion polymorphism in the HLA-G gene plays an important role in sHLA-G expression and that interpretation of the potential biological functions of sHLA-G should be made with caution, taking the polymorphism into consideration.
Phenotypic heterogeneity has been observed in most malignancies, which represents a considerable challenge for tumor therapy. In recent decades, the biological function and clinical significance of the human leukocyte antigen (HLA)-G have been intensively explored. It is now widely accepted that HLA-G is a critical marker of immunotolerance in cancer cell immune evasion and is strongly associated with disease progress and prognosis for cancer patients. Moreover, it has recently been emphasized that the signaling pathway linking HLA-G and immunoglobulin-like transcripts (ILTs) is considered an immune checkpoint. In addition, HLA-G itself can generate at least seven distinct isoforms, and intertumor and intratumor heterogeneity of HLA-G expression is common across different tumor types. Furthermore, HLA-G heterogeneity in cancers has been related to disease stage and outcomes, metastatic status and response to different therapies. This review focuses on the heterogeneity of HLA-G expression in malignant lesions, and clinical implications of this heterogeneity that might be relevant to personalized treatments are also discussed.
Aberrant induction of human leukocyte antigen-G (HLA-G) expression has been observed in various malignancies and is strongly associated with tumor immune escape, metastasis and poor prognosis. To date, great achievements have been made in understanding the underlying mechanisms of HLA-G involved in tumor progression. HLA-G could lead to tumor evasion by inhibition of immune cell cytolysis, differentiation and proliferation and inhibition of cytokine production, induction of immune cell apoptosis, generation of regulatory cells and expansion of myeloid-derived suppressive cells and by impairment of chemotaxis. Moreover, HLA-G could arm tumor cells with a higher invasive and metastatic potential with the upregulation of tumor-promoting factor expression such as matrix metalloproteinases (MMPs), indicating that ectopic HLA-G expression could render multiple effects during the progression of malignancies. In this review, we summarized the mechanisms of HLA-G involved in promoting tumor cell immune escaping, metastasis and disease progression. Special attention will be paid to its significance as an attractive therapeutic target in cancers.
HLA-G was expressed in a significant number of primary ovarian carcinoma tissues, and HLA-G expression in OVCAR-3 could directly inhibit NK-92 cell lysis. Taken together, our results indicated that expression of HLA-G plays an important role in evasion of ovarian cancer cells from host immunosurveillance.
HLA-G has been documented both in establishment of anti-tumour immune responses and in tumour evasion. To investigate the clinical relevance of HLA-G in non-small-cell lung cancer (NSCLC), expression status and potential significance of HLA-G in NSCLC were analysed. In this study, HLA-G expression in 101 NSCLC primary lesions and plasma soluble HLA-G (sHLA-G) from 91 patients were analysed with immunohistochemistry and ELISA, respectively. Correlations between HLA-G status and various clinical parameters including survival time were evaluated. Meanwhile, functional analysis of transfected cell surface HLA-G expression and plasma sHLA-G form NSCLC patients on natural killer (NK) cell cytolysis were performed. Data revealed that HLA-G was expressed in 41.6% (42/101) NSCLC primary lesions, while undetectable in adjacent normal lung tissues. HLA-G expression in NSCLC lesions was strongly correlated to disease stages (P= 0.002). Plasma sHLA-G from NSCLC patients was markedly higher than that in normal controls (P= 0.004), which was significantly associated with the disease stages (I versus IV, P= 0.025; II versus IV, P= 0.029). Patient plasma sHLA-G level (≥median, 32.0 U/ml) had a significantly shorter survival time (P= 0.044); however, no similar significance was observed for the lesion HLA-G expression. In vitro data showed that both cell surface HLA-G and patient plasma sHLA-G could dramatically decrease the NK cell cytolysis. Our findings indicated that both lesion HLA-G expression and plasma sHLA-G in NSCLC is related to the disease stage and can exert immunosuppression to the NK cell cytolysis, indicating that HLA-G could be a potential therapeutic target. Moreover, plasma sHLA-G in NSCLC patients could be used as a prognosis factor for NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.