Breast milk delivers nutrition and protection to the developing infant. There has been considerable research on the high-molecular-weight milk components; however, low-molecular-weight metabolites have received less attention. To determine the effect of maternal phenotype and diet on the human milk metabolome, milk collected at day 90 postpartum from 52 healthy women was analyzed by using proton nuclear magnetic resonance spectroscopy. Sixty-five milk metabolites were quantified (mono-, di-, and oligosaccharides; amino acids and derivatives; energy metabolites; fatty acids and associated metabolites; vitamins, nucleotides, and derivatives; and others). The biological variation, represented as the percentage CV of each metabolite, varied widely (4-120%), with several metabolites having low variation (<20%), including lactose, urea, glutamate, myo-inositol, and creatinine. Principal components analysis identified 2 clear groups of participants who were differentiable on the basis of milk oligosaccharide concentration and who were classified as secretors or nonsecretors of fucosyltransferase 2 (FUT2) gene products according to the concentration of 2'-fucosyllactose, lactodifucotetraose, and lacto-N-fucopentaose I. Exploration of the interrelations between the milk sugars by using Spearman rank correlations revealed significant positive and negative associations, including positive correlations between fucose and products of the FUT2 gene and negative correlations between fucose and products of the fucosyltransferase 3 (FUT3) gene. The total concentration of milk oligosaccharides was conserved among participants (%CV = 18%), suggesting tight regulation of total oligosaccharide production; however, concentrations of specific oligosaccharides varied widely between participants (%CV = 30.4-84.3%). The variability in certain milk metabolites suggests possible roles in infant or infant gut microbial development. This trial was registered at clinicaltrials.gov as NCT01817127.
Habitual dietary patterns are shown in metabolomic data. This approach successfully identified potential biomarkers of red-meat and vegetable intakes.
Epidemiological research has indicated a relationship between infant formula feeding and increased risk of chronic diseases later in life including obesity, type-2 diabetes, and cardiovascular disease. The present study used an infant rhesus monkey model to compare the comprehensive metabolic implications of formula- and breast-feeding practices using NMR spectroscopy to characterize metabolite fingerprints from urine and serum, in combination with anthropometric measurements, fecal microbial profiling, and cytokine measurements. Here we show that formula-fed infants are larger than their breast-fed counterparts and have a different gut microbiome that includes higher levels of bacteria from the Ruminococcus genus and lower levels of bacteria from the Lactobacillus genus. In addition, formula-fed infants have higher serum insulin coupled with higher amino acid levels, while amino acid degradation products were higher in breast-fed infants. Increases in serum and urine galactose and urine galactitol were observed in the second month of life in formula-fed infants, along with higher levels of TNFα, IFN-γ, IL-1β, IL-4, and other cytokines and growth factors at week 4. These results demonstrate that metabolic and gut microbiome development of formula-fed infants is different from breast-fed infants and that the choice of infant feeding may hold future health consequences.
This study was undertaken to investigate physiological adaptation with two endurance-training periods differing in intensity distribution. In a randomized crossover fashion, separated by 4 wk of detraining, 12 male cyclists completed two 6-wk training periods: 1) a polarized model [6.4 (±1.4 SD) h/wk; 80%, 0%, and 20% of training time in low-, moderate-, and high-intensity zones, respectively]; and 2) a threshold model [7.5 (±2.0 SD) h/wk; 57%, 43%, and 0% training-intensity distribution]. Before and after each training period, following 2 days of diet and exercise control, fasted skeletal muscle biopsies were obtained for mitochondrial enzyme activity and monocarboxylate transporter (MCT) 1 and 4 expression, and morning first-void urine samples were collected for NMR spectroscopy-based metabolomics analysis. Endurance performance (40-km time trial), incremental exercise, peak power output (PPO), and high-intensity exercise capacity (95% maximal work rate to exhaustion) were also assessed. Endurance performance, PPOs, lactate threshold (LT), MCT4, and high-intensity exercise capacity all increased over both training periods. Improvements were greater following polarized rather than threshold for PPO [mean (±SE) change of 8 (±2)% vs. 3 (±1)%, P < 0.05], LT [9 (±3)% vs. 2 (±4)%, P < 0.05], and high-intensity exercise capacity [85 (±14)% vs. 37 (±14)%, P < 0.05]. No changes in mitochondrial enzyme activities or MCT1 were observed following training. A significant multilevel, partial least squares-discriminant analysis model was obtained for the threshold model but not the polarized model in the metabolomics analysis. A polarized training distribution results in greater systemic adaptation over 6 wk in already well-trained cyclists. Markers of muscle metabolic adaptation are largely unchanged, but metabolomics markers suggest different cellular metabolic stress that requires further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.