Variegated plants typically have green-and white-sectored leaves. Cells in the green sectors contain normal-appearing chloroplasts, whereas cells in the white sectors lack pigments and appear to be blocked at various stages of chloroplast biogenesis. Variegations can be caused by mutations in nuclear, chloroplast or mitochondrial genes. In some plants, the green and white sectors have different genotypes, but in others they have the same (mutant) genotype. One advantage of variegations is that they provide a means of studying genes for proteins that are important for chloroplast development, but for which mutant analysis is difficult, either because mutations in a gene of interest are lethal or because they do not show a readily distinguishable phenotype. This paper focuses on Arabidopsis variegations, for which the most information is available at the molecular level. Perhaps the most interesting of these are variegations caused by defective nuclear gene products in which the cells of the mutant have a uniform genotype. Two questions are of paramount interest: (1) What is the gene product and how does it function in chloroplast biogenesis? (2) What is the mechanism of variegation and why do green sectors arise in plants with a uniform (mutant) genotype? Two paradigms of variegation mechanism are described: immutans (im) and variegated2 (var2). Both mechanisms emphasize compensating activities and the notion of plastid autonomy, but redundant gene products are proposed to play a role in var2, but not in im. It is hypothesized that threshold levels of certain activities are necessary for normal chloroplast development.
Photosynthetic light reactions rely on the proper function of large protein complexes (including photosystems I and II) that reside in the thylakoid membrane. Although their composition, structure, and function are known, the repertoire of assembly and maintenance factors is still being determined. Here we show that an immunophilin of the cyclophilin type, CYP38, plays a critical role in the assembly and maintenance of photosystem II (PSII) supercomplexes (SCs) in Arabidopsis. Mutant plants with the CYP38 gene interrupted by T-DNA insertion showed stunted growth and were hypersensitive to high light. Leaf chlorophyll fluorescence analysis and thylakoid membrane composition indicated that cyp38 mutant plants had defects in PSII SCs. Sucrose supplementation enabled the rescue of the mutant phenotype under low-light conditions, but failed to mitigate hypersensitivity to high-light stress. Protein radiolabeling assays showed that, although individual thylakoid proteins were synthesized equally in mutant and wild type, the assembly of the PSII SC was impaired in the mutant. In addition, the D1 and D2 components of the mutant PSII had a short half-life under high-light stress. The results provide evidence that CYP38 is necessary for the assembly and stabilization of PSII.thylakoid lumen ͉ immunophilin ͉ photosynthesis ͉ protein folding ͉ chaperone T he light reactions and attendant evolution of oxygen in photosynthesis are carried out by four multisubunit protein complexes residing in the chloroplast thylakoid membranes: photosystems I (PSI) and II (PSII), cytochrome b 6 f complex, and CF O -CF 1 complex (1-3). For a complete understanding of the photosynthetic process, it is essential to understand the biogenesis and maintenance of the participating complexes. Earlier studies on thylakoid protein supercomplex (SC) assembly, especially PSII, concentrated on the role of stromal factors, such as the translation and import machinery (4), because only a limited number of proteins were known to reside in the thylakoid lumen. However, recent proteomic findings suggest a population of 80-100 proteins in that compartment (5-7). The immunophilin family is one of the predominant groups identified.Immunophilins were originally discovered in their capacity as cellular receptors for immunosuppressive drugs: cyclosporin A and FK506 (8, 9). The receptors for cyclosporin A and FK506, named cyclophilins (CYPs) and FK506-binding proteins (FKBPs), respectively, were collectively designated as immunophilins. A common feature of most immunophilins is the associated peptidyl-prolyl cis-trans isomerase activity that catalyzes the cis-trans conversion of X-Pro peptide bonds, a rate-limiting step in protein folding (8). These proteins are now known to occur widely in organisms ranging from bacteria and fungi to animals and plants. Studies in animal and plant systems have uncovered diverse functions of immunophilins, such as protein foldases, chaperones, and scaffolding facilitators. They also possibly have unknown catalytic capabilities (10, ...
IMMUTANS (IM) encodes a thylakoid membrane protein that has been hypothesized to act as a terminal oxidase that couples the reduction of O 2 to the oxidation of the plastoquinone (PQ) pool of the photosynthetic electron transport chain. Because IM shares sequence similarity to the stress-induced mitochondrial alternative oxidase (AOX), it has been suggested that the protein encoded by IM acts as a safety valve during the generation of excess photosynthetically generated electrons. We combined in vivo chlorophyll fluorescence quenching analyses with measurements of the redox state of P 700 to assess the capacity of IM to compete with photosystem I for intersystem electrons during steady-state photosynthesis in Arabidopsis (Arabidopsis thaliana).Comparisons were made between wild-type plants, im mutant plants, as well as transgenics in which IM protein levels had been overexpressed six (OE-6 3) and 16 (OE-16 3) times. Immunoblots indicated that IM abundance was the only major variant that we could detect between these genotypes. Overexpression of IM did not result in increased capacity to keep the PQ pool oxidized compared to either the wild type or im grown under control conditions (25°C and photosynthetic photon flux density of 150 mmol photons m 22 s 21 ). Similar results were observed either after 3-d cold stress at 5°C or after full-leaf expansion at 5°C and photosynthetic photon flux density of 150 mmol photons m 22 s 21 . Furthermore, IM abundance did not enhance protection of either photosystem II or photosystem I from photoinhibition at either 25°C or 5°C. Our in vivo data indicate that modulation of IM expression and polypeptide accumulation does not alter the flux of intersystem electrons to P 700 1 during steady-state photosynthesis and does not provide any significant photoprotection. In contrast to AOX1a, meta-analyses of published Arabidopsis microarray data indicated that IM expression exhibited minimal modulation in response to myriad abiotic stresses, which is consistent with our functional data. However, IM exhibited significant modulation in response to development in concert with changes in AOX1a expression. Thus, neither our functional analyses of the IM knockout and overexpression lines nor meta-analyses of gene expression support the model that IM acts as a safety valve to regulate the redox state of the PQ pool during stress and acclimation. Rather, IM appears to be strongly regulated by developmental stage of Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.