Thyroid hormones are essential for normal development and metabolism. Thyroid hormone biosynthesis requires iodide uptake into the thyrocytes and efflux into the follicular lumen, where it is organified on selected tyrosyls of thyroglobulin. Uptake of iodide into the thyrocytes is mediated by an intrinsic membrane glycoprotein, the sodium-iodide symporter (NIS), which actively cotransports two sodium cations per each iodide anion. NIS-mediated transport of iodide is driven by the electrochemical sodium gradient generated by the Na(+)/K(+)-ATPase. NIS is expressed in the thyroid, the salivary glands, gastric mucosa, and the lactating mammary gland. TSH and iodide regulate iodide accumulation by modulating NIS activity via transcriptional and posttranscriptional mechanisms. Biallelic mutations in the NIS gene lead to a congenital iodide transport defect, an autosomal recessive condition characterized by hypothyroidism, goiter, low thyroid iodide uptake, and a low saliva/plasma iodide ratio. Pendrin is an anion transporter that is predominantly expressed in the inner ear, the thyroid, and the kidney. Biallelic mutations in the SLC26A4 gene lead to Pendred syndrome, an autosomal recessive disorder characterized by sensorineural deafness, goiter, and impaired iodide organification. In thyroid follicular cells, pendrin is expressed at the apical membrane. Functional in vitro data and the impaired iodide organification observed in patients with Pendred syndrome support a role of pendrin as an apical iodide transporter.
Thyroid hormones are essential for normal development and metabolism. Their synthesis requires transport of iodide into thyroid follicles. The mechanisms involving the apical efflux of iodide into the follicular lumen are poorly elucidated. The discovery of mutations in the SLC26A4 gene in patients with Pendred syndrome (congenital deafness, goiter, and defective iodide organification) suggested a possible role for the encoded protein, pendrin, as an apical iodide transporter. We determined whether TSH regulates pendrin abundance at the plasma membrane and whether this influences iodide efflux. Results of immunoblot and immunofluorescence experiments reveal that TSH and forskolin rapidly increase pendrin abundance at the plasma membrane through the protein kinase A pathway in PCCL-3 rat thyroid cells. The increase in pendrin membrane abundance correlates with a decrease in intracellular iodide as determined by measuring intracellular (125)iodide and can be inhibited by specific blocking of pendrin. Elimination of the putative protein kinase A phosphorylation site T717A results in a diminished translocation to the membrane in response to forskolin. These results demonstrate that pendrin translocates to the membrane in response to TSH and suggest that it may have a physiological role in apical iodide transport and thyroid hormone synthesis.
Background: Pendrin is a multifunctional anion transporter that exchanges chloride and iodide in the thyroid, as well as chloride and bicarbonate in the inner ear, kidney and airways. Loss or reduction in the function of pendrin results in both syndromic (Pendred syndrome) and non-syndromic (non-syndromic enlarged vestibular aqueduct (ns-EVA)) hearing loss. Factors inducing an up-regulation of pendrin in the kidney and the lung may have an impact on the pathogenesis of hypertension, chronic obstructive pulmonary disease (COPD) and asthma. Here we characterize the ion transport activity of wild-type (WT) pendrin and seven of its allelic variants selected among those reported in the single nucleotide polymorphisms data base (dbSNPs), some of which were previously identified in a cohort of individuals with normal hearing or deaf patients belonging to the Spanish population. Methods: WT and mutated pendrin allelic variants were functionally characterized in a heterologous over-expression system by means of fluorometric methods evaluating the I-/Cl- and Cl-/OH- exchange and an assay evaluating the efflux of radiolabeled iodide. Results: The transport activity of pendrin P70L, P301L and F667C is completely abolished; pendrin V609G and D687Y allelic variants are functionally impaired but retain significant transport. Pendrin F354S activity is indistinguishable from WT, while pendrin V88I and G740S exhibit a gain of function. Conclusion: Amino acid substitutions involving a proline always result in a severe loss of function of pendrin. Two hyperfunctional allelic variants (V88I, G740S) have been identified, and they may have a contributing role in the pathogenesis of hypertension, COPD and asthma.
Pendred syndrome is an autosomal recessive disorder defined by sensorineural deafness, goiter and a partial organification defect of iodide. It is caused by biallelic mutations in the multifunctional anion transporter pendrin/SLC26A4. In human thyroid tissue, pendrin is localized at the apical membrane of thyroid follicular cells. The clinical phenotype of patients with Pendred syndrome and the fact that pendrin can mediate iodide efflux in transfected cells suggest that this anion exchanger may be involved in mediating iodide efflux into the follicular lumen, a key step in thyroid hormone biosynthesis. This concept has, however, been questioned. This review discusses supporting evidence as well as arguments questioning a role of pendrin in mediating iodide efflux in thyrocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.