Nonresolving inflammation is a major driver of disease. Perpetuation of inflammation is an inherent risk because inflammation can damage tissue and necrosis can provoke inflammation. Nonetheless, multiple mechanisms normally ensure resolution. Cells like macrophages switch phenotypes, secreted molecules like reactive oxygen intermediates switch impact from pro- to anti-inflammatory, and additional mediators of resolution arise, including proteins, lipids, and gasses. Aside from persistence of initiating stimuli, nonresolution may result from deficiencies in these mechanisms when an inflammatory response begins either excessively or subnormally. This greatly complicates the development of anti-inflammatory therapies. The problem calls for conceptual, organizational, and statistical innovations.
The growth factor progranulin (PGRN) has been implicated in embryonic development, tissue repair, tumorigenesis, and inflammation, but its receptors remain unidentified. We report that PGRN bound directly to tumor necrosis factor receptors (TNFR), and disturbed the TNFα/TNFR interaction. PGRN-deficient mice were susceptible to collagen-induced arthritis, and administration of PGRN reversed inflammatory arthritis. Atsttrin, an engineered protein composed of three PGRN fragments, exhibited selective TNFR binding. PGRN and Atsttrin prevented inflammation in multiple arthritis mouse models and inhibited TNFα-activated intracellular signaling. Collectively, these findings demonstrate that PGRN is a ligand of TNFR, an antagonist of TNFα signaling and plays a critical role in the pathogenesis of inflammatory arthritis in mice. They also suggest new potential therapeutic interventions for various TNFα-mediated pathologies and conditions, including rheumatoid arthritis.
Nitric oxide (NO) conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission, and cytotoxicity. In some endothelial cells and neurons, a constitutive NO synthase is activated transiently by agonists that elevate intracellular calcium concentrations and promote the binding of calmodulin. In contrast, in macrophages, NO synthase activity appears slowly after exposure of the cells to cytokines and bacterial products, is sustained, and functions independently of calcium and calmodulin. A monospecific antibody was used to clone complementary DNA that encoded two isoforms of NO synthase from immunologically activated mouse macrophages. Liquid chromatography-mass spectrometry was used to confirm most of the amino acid sequence. Macrophage NO synthase differs extensively from cerebellar NO synthase. The macrophage enzyme is immunologically induced at the transcriptional level and closely resembles the enzyme in cytokine-treated tumor cells and inflammatory neutrophils.
Axonal and synaptic degeneration is a hallmark of peripheral neuropathy, brain injury, and neurodegenerative disease. Axonal degeneration has been proposed to be mediated by an active autodestruction program, akin to apoptotic cell death; however, loss-of-function mutations capable of potently blocking axon self-destruction have not been described. Here, we show that loss of the Drosophila Toll receptor adaptor dSarm (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously suppresses Wallerian degeneration for weeks after axotomy. Severed mouse Sarm1 null axons exhibit remarkable long-term survival both in vivo and in vitro, indicating that Sarm1 prodegenerative signaling is conserved in mammals. Our results provide direct evidence that axons actively promote their own destruction after injury and identify dSarm/Sarm1 as a member of an ancient axon death signaling pathway.
In response to bacterial endotoxin (e.g., LPS) or endogenous proinflammatory cytokines (e.g., TNF and IL-1beta), innate immune cells release HMGB1, a late cytokine mediator of lethal endotoxemia and sepsis. The delayed kinetics of HMGB1 release makes it an attractive therapeutic target with a wider window of opportunity for the treatment of lethal systemic inflammation. However, the receptor(s) responsible for HMGB1-mediated production of proinflammatory cytokines has not been well characterized. Here we demonstrate that in human whole blood, neutralizing antibodies against Toll-like receptor 4 (TLR4, but not TLR2 or receptor for advanced glycation end product) dose-dependently attenuate HMGB1-induced IL-8 release. Similarly, in primary human macrophages, HMGB1-induced TNF release is dose-dependently inhibited by anti-TLR4 antibodies. In primary macrophages from knockout mice, HMGB1 activates significantly less TNF release in cells obtained from MyD88 and TLR4 knockout mice as compared with cells from TLR2 knockout and wild-type controls. However, in human embryonic kidney 293 cells transfected with TLR2 or TLR4, HMGB1 effectively induces IL-8 release only from TLR2 overexpressing cells. Consistently, anti-TLR2 antibodies dose-dependently attenuate HMGB1-induced IL-8 release in human embryonic kidney/TLR2-expressing cells and markedly reduce HMGB1 cell surface binding on murine macrophage-like RAW 264.7 cells. Taken together, our data suggest that there is a differential usage of TLR2 and TLR4 in HMGB1 signaling in primary cells and in established cell lines, adding complexity to studies of HMGB1 signaling which was not previously expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.