Wrapping and unwrapping behaviors of double-stranded DNA around a positively charged nanosphere in solution are studied by using the coarse-grained molecular dynamics (CGMD) simulation method. When monovalent, divalent and trivalent anions are added to the DNA-nanosphere complex solution, double-stranded DNA binds with a nanosphere owing to strong electrostatic attraction. However, when tetravalent anions are added to the DNA-nanosphere complex solution, local charge inversion is observed for a high anion concentration of tetravalent anions and the double-stranded DNA can be unwrapped from the nanosphere because of the local charge inversion near the nanosphere. Moreover, the helical structure of DNA is damaged when double-stranded DNA wraps around the nanosphere and the helical structure can be rebuilt when the double-stranded DNA unwraps from the nanosphere. This study can help us understand how to control the release of DNA in DNA-nanosphere complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.