Interference fits are widely used for connecting impeller and shaft assembly that are forced together slowly by pressing. The interference fit design ensures stable balance behavior and allows for positive contact between the impeller and shaft assembly throughout the range of operating speeds. In addition to maintaining radial contact, sufficient net radial interface pressure must remain in order to transmit torque when the rotational speed is very high. Therefore, the interference fit between the impeller and the shaft assembly is one of the most important factors influencing the performance of the turbo unit in the design of turbocharger compressor. A suitable fit tolerance needs to be considered in the structural design.A locomotive-type turbocharger compressor with 24 blades under combined centrifugal and interference fit loading is used for the analysis. The finite-element (FE) parametric quadratic programming (PQP) method developed based on the parametric variational principle (PVP) is used for the analysis of the stress distribution in the three-dimensional (3D) contact problem of impeller. The advantages of the parametric programming method compared with conventional approaches are that the penalty factors can be canceled and that solutions can be obtained directly without tedious iterative procedures such as the general incremental iterative method. To save time in the computation, a multi-substructure technique is adopted for structural modeling. This not only simplifies the calculation, but also provides a convenient service for process computer-aided design (CAD) by means of FE simulation. The effects of the fit tolerance, coefficient of friction and rotational speed (centrifugal force), wall thickness of the shaft sleeve and the contact stress on the interference-fitting surfaces are studied in detail in the numerical computation. It is found that a nonuniform initial amount of interference in the structural design avoids the relative displacement generated and ensures uniformity of the contact stress. To assure quality of press-fitting, the amount of interference between the shaft sleeve and shaft should be strictly controlled to avoid the rapid increase of the contact stress. The numerical results demonstrate the high accuracy and good convergence of the algorithm presented here, which provides an effective approach that achieves more-reliable interference-fitted connections and more-precise assembly accuracy with lower manufacturing cost in the structural design.
Metallic materials usually contain some amounts of inclusions which are known to affect their mechanical properties since the bonding strength of the matrix–inclusion interface is relatively low, voids or cracks are thus easily formed under a tensile loading. However, under a contact loading, the effects of subsurface inclusions on the sliding wear of metallic materials are not thoroughly understood. In this work, a micromechanical model is proposed to study the shear fracture and wear of metallic materials containing random inclusions. With the model, crack branching and crack aggregation during contact loading are simulated, and the formation process of sheet-like wear particles is clarified. It is demonstrated that the subsurface micro-cracks, particularly those near inclusions, and their subsequent evolution play a major role in the adhesive wear. This investigation is helpful in understanding the adhesive mechanism of wear, and the proposed model could be a promising approach for the prediction of adhesive wear.
This study analyzes the stress distribution of 3D elastoplastic contact problems by using the FE parametric quadratic programming (PQP) method derived from a 3D FE model based on parametric variational principle (PVP). We numerically analyze a 24-blade compressor by combining centrifugal loading with interference-fit one. To accelerate computation, calculation is simplified by structural modeling via multisubstructuring, aiming to deal with FE-simulated computer aided design (CAD) conveniently. We then analyze the relationships between the maximum residual stresses of the compressor posterior to prestressing and overspeed rpms, and we also study the distribution and magnitude of the contact stresses of the compressor in working conditions after overspeed prestressing. Moreover, we thoroughly discuss the distribution and magnitude of the contact stresses of shaft-shaft sleeve-impeller in working conditions. Relative displacement can be prevented and contact stress can be kept uniform due to the nonuniform initial amount of interference in overspeed prestressing. This paper summarizes the FEM simulation results and provides reference data for improving the design and processing of compressor impellers, indicating that overspeed is indispensable in manufacture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.