Today’s societies are connected to a level that has never been seen before. The COVID-19 pandemic has exposed the vulnerabilities of such an unprecedently connected world. As of 19 November 2020, over 56 million people have been infected with nearly 1.35 million deaths, and the numbers are growing. The state-of-the-art social media analytics for COVID-19-related studies to understand the various phenomena happening in our environment are limited and require many more studies. This paper proposes a software tool comprising a collection of unsupervised Latent Dirichlet Allocation (LDA) machine learning and other methods for the analysis of Twitter data in Arabic with the aim to detect government pandemic measures and public concerns during the COVID-19 pandemic. The tool is described in detail, including its architecture, five software components, and algorithms. Using the tool, we collect a dataset comprising 14 million tweets from the Kingdom of Saudi Arabia (KSA) for the period 1 February 2020 to 1 June 2020. We detect 15 government pandemic measures and public concerns and six macro-concerns (economic sustainability, social sustainability, etc.), and formulate their information-structural, temporal, and spatio-temporal relationships. For example, we are able to detect the timewise progression of events from the public discussions on COVID-19 cases in mid-March to the first curfew on 22 March, financial loan incentives on 22 March, the increased quarantine discussions during March–April, the discussions on the reduced mobility levels from 24 March onwards, the blood donation shortfall late March onwards, the government’s 9 billion SAR (Saudi Riyal) salary incentives on 3 April, lifting the ban on five daily prayers in mosques on 26 May, and finally the return to normal government measures on 29 May 2020. These findings show the effectiveness of the Twitter media in detecting important events, government measures, public concerns, and other information in both time and space with no earlier knowledge about them.
Smartness, which underpins smart cities and societies, is defined by our ability to engage with our environments, analyze them, and make decisions, all in a timely manner. Healthcare is the prime candidate needing the transformative capability of this smartness. Social media could enable a ubiquitous and continuous engagement between healthcare stakeholders, leading to better public health. Current works are limited in their scope, functionality, and scalability. This paper proposes Sehaa, a big data analytics tool for healthcare in the Kingdom of Saudi Arabia (KSA) using Twitter data in Arabic. Sehaa uses Naive Bayes, Logistic Regression, and multiple feature extraction methods to detect various diseases in the KSA. Sehaa found that the top five diseases in Saudi Arabia in terms of the actual afflicted cases are dermal diseases, heart diseases, hypertension, cancer, and diabetes. Riyadh and Jeddah need to do more in creating awareness about the top diseases. Taif is the healthiest city in the KSA in terms of the detected diseases and awareness activities. Sehaa is developed over Apache Spark allowing true scalability. The dataset used comprises 18.9 million tweets collected from November 2018 to September 2019. The results are evaluated using well-known numerical criteria (Accuracy and F1-Score) and are validated against externally available statistics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.