Oxidation of aluminum nanoclusters is investigated with a parallel molecular-dynamics approach based on dynamic charge transfer among atoms. Structural and dynamic correlations reveal that significant charge transfer gives rise to large negative pressure in the oxide which dominates the positive pressure due to steric forces. As a result, aluminum moves outward and oxygen moves towards the interior of the cluster with the aluminum diffusivity 60% higher than that of oxygen. A stable 40 Å thick amorphous oxide is formed; this is in excellent agreement with experiments. [S0031-9007(99)09416-8]
Alloying in 2D results in the development of new, diverse, and versatile systems with prospects in bandgap engineering, catalysis, and energy storage. Tailoring structural phase transitions using alloying is a novel idea with implications in designing all 2D device architecture as the structural phases in 2D materials such as transition metal dichalcogenides are correlated with electronic phases. Here, this study develops a new growth strategy employing chemical vapor deposition to grow monolayer 2D alloys of Re-doped MoSe with show composition tunable structural phase variations. The compositions where the phase transition is observed agree well with the theoretical predictions for these 2D systems. It is also shown that in addition to the predicted new electronic phases, these systems also provide opportunities to study novel phenomena such as magnetism which broadens the range of their applications.
An effective interatomic interaction potential for SiC is proposed. The potential consists of two-body and three-body covalent interactions. The two-body potential includes steric repulsions due to atomic sizes, Coulomb interactions resulting from charge transfer between atoms, charge-induced dipole-interactions due to the electronic polarizability of ions, and induced dipole-dipole ͑van der Waals͒ interactions. The covalent characters of the Si-C-Si and C-Si-C bonds are described by the three-body potential. The proposed three-body interaction potential is a modification of the Stillinger-Weber form proposed to describe Si. Using the molecular dynamics method, the interaction potential is used to study structural, elastic, and dynamical properties of crystalline ͑3C͒, amorphous, and liquid states of SiC for several densities and temperatures. The structural energy for cubic ͑3C͒ structure has the lowest energy, followed by the wurtzite ͑2H͒ and rock-salt ͑RS͒ structures. The pressure for the structural transformation from 3C-to-RS from the common tangent is found to be 90 GPa. For 3C-SiC, our computed elastic constants ͑C 11 , C 12 , and C 44 ͒, melting temperature, vibrational density-of-states, and specific heat agree well with the experiments. Predictions are made for the elastic constant as a function of density for the crystalline and amorphous phase. Structural correlations, such as pair distribution function and neutron and x-ray static structure factors are calculated for the amorphous and liquid state.
Pressure-induced structural transformation in cubic silicon carbide is studied with the isothermal-isobaric molecular-dynamics method using a new interatomic potential scheme. The reversible transformation between the fourfold coordinated zinc-blende structure and the sixfold coordinated rocksalt structure is successfully reproduced by the interatomic potentials. The calculated volume change at the transition and hysteresis are in good agreement with experimental data. The atomistic mechanisms of the structural transformation involve a cubic-to-monoclinic unit-cell transformation and a relative shift of Si and C sublattices in the 100 direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.