The synthesis of iron oxide nanoparticles of the predominantly magnetite phase by the reaction of aqueous iron complexes with the bacterium, Actinobacter spp., is described. This reaction occurs at room temperature and under aerobic conditions, resulting in the formation of superparamagnetic magnetite.
Integrin-linked kinase (ILK) is a highly conserved serinethreonine protein kinase involved in cell-extracellular matrix interactions, cytoskeletal organization and cell signaling. Overexpression of ILK in epithelial cells leads to anchorage-independent growth with increased cell cycle progression. Previously, we have shown that ILK upregulation strongly correlates with melanoma progression, invasion and inversely correlates with 5-year survival of melanoma patients. However, the molecular mechanism by which ILK enhances melanoma progression is currently unknown. In the present study, we found that proangiogenic molecule interleukin-6 (IL-6) is the downstream target of ILK in melanoma cells. ILK overexpression increased IL-6, whereas silencing of ILK suppressed IL-6 expression at both messenger RNA and protein levels. ILK also altered the activity and subcellular localization of nuclear factor-kappaB (NF-jB) subunit p65. We further found that ILK enhanced the IL-6 gene transcription by promoting the binding of NF-kB p65 to IL-6 promoter. Moreover, ILK overexpression in melanoma cells enhanced the tube-forming ability of endothelial cells in vitro and microvessel formation in vivo. ILK-induced tube and blood vessel formation of endothelial cells was significantly reduced upon IL-6 inhibition in ILK-overexpressing melanoma cells. To delineate the mechanism by which ILK-induced IL-6 production can enhance angiogenesis, further analysis of the downstream targets of IL-6 signaling showed an increased activity of the signal transducer and activator of transcription 3 (STAT3) in ILK-overexpressing cells. As STAT3 binds to vascular endothelial growth factor (VEGF) promoter, we found that VEGF levels were elevated in ILK-overexpressing cells and declined upon transfection of IL-6 small interfering RNA, suggesting that ILK may regulate VEGF expression through IL-6 pathway by activating STAT3.
The Sox4 transcription factor is involved in various cellular processes, such as embryonic development and differentiation. Deregulated expression of Sox4 in several human cancers has been reported to date, but its role in melanoma is unknown. We explored the role of Sox4 in melanoma pathogenesis in vivo and in vitro. Using tissue microarray, we evaluated Sox4 expression in 180 melanocytic lesions and investigated its role in melanoma cell migration and invasion. Sox4 expression was remarkably reduced in metastatic melanoma compared with dysplastic nevi (P < 0.05) and primary melanoma (P < 0.01). This reduction was correlated with a poorer disease-specific survival of melanoma patients (P ؍ 0.039). Multivariate Cox regression analysis revealed that reduced Sox4 expression is an independent prognostic factor (P ؍ 0.049). Knockdown of Sox4 enhanced melanoma cell invasion, migration, and stress fiber formation. The increased migration and invasion on Sox4 knockdown depends on the presence of nuclear factor (NF)-B p50 and is abrogated when p50 is knocked down. We further observed inhibition of NF-B p50 transcription by Sox4, in addition to a reverse pattern of expression of Sox4 and NF-B p50 in different stages of melanocytic lesions. Our results suggest that Sox4 regulates melanoma cell migration and invasion in an NF-B p50-dependent manner and may serve as a prognostic marker and potential therapeutic target for human melanoma. (Am J Pathol
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.