Effective and quick screening and cardiotoxicity assessment are very crucial for drug development. Here, a novel composite hydrogel composed of carbon fibers (CFs) with high conductivity and modulus with polyvinyl alcohol (PVA) is reported. The conductivity of the composite hydrogel PVA/CFs is similar to that of natural heart tissue, and the elastic modulus is close to that of natural heart tissue during systole, due to the incorporation of CFs. PVA/CFs remarkably enhance the maturation of neonatal rat cardiomyocytes (NRCM) in vitro by upregulating the expression of α‐actinin, troponin T, and connexin‐43, activating the signaling pathway of α5 and β1 integrin‐dependent ILK/p‐AKT, and increasing the level of RhoA and hypoxia‐inducible factor‐1α. As a result, the engineered cell sheet–like constructs NRCM@PVA/CFs display much more synchronous, stable, and robust beating behavior than NRCM@PVA. When exposed to doxorubicin or isoprenaline, NRCM@PVA/CFs can retain effective beating for much longer time or change the contractile rate much faster than NRCM@PVA, respectively, therefore representing a promising heart‐like platform for in vitro drug screening and cardiotoxicity assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.