As an evolutionarily conserved mechanism, developmental neuronal remodeling is needed for the proper wiring of the nervous system and is critical for understanding the neurodevelopment mechanisms. Previous studies have shown that during metamorphosis lots of Drosophila melanogaster mushroom body neurons experience stereotypic remodeling. However, the related regulators and downstream executors of pathways are yet unclear, especially studies of transcriptional gene co-expression analysis of nervous systems remain insufficient. In this study, we develop a weighted gene co-expression network (WGCNA) to classify gene modules associated with neuronal remodeling. Moreover, functional and pathway enrichment analysis with protein-protein network construction is applied to detect high informative hub genes in the targeted gene module. Thus, we select a total of five hub genes that play critical roles in neuronal remodeling and identify them with functional enrichment analysis and protein-protein interaction network. Overall, this study provides insight into the underlying molecular mechanism of developmental neuronal remodeling in Drosophila melanogaster.
As an evolutionarily conserved mechanism, developmental neuronal remodeling is needed for the proper wiring of the nervous system and is critical for understanding the neurodevelopment mechanisms. Previous studies have shown that during metamorphosis lots of Drosophila melanogaster mushroom body neurons experience stereotypic remodeling. However, the related regulators and downstream executors of pathways are yet unclear, especially studies of transcriptional gene co-expression analysis of nervous systems remain insufficient. In this study, we develop a weighted gene co-expression network (WGCNA) to classify gene modules associated with neuronal remodeling. Moreover, functional and pathway enrichment analysis with protein-protein network construction is applied to detect high informative hub genes in the targeted gene module. Thus, we select a total of five hub genes that play critical roles in neuronal remodeling and identify them with functional enrichment analysis and protein-protein interaction network. Overall, this study provides insight into the underlying molecular mechanism of developmental neuronal remodeling in Drosophila melanogaster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.