Abstract:In recent years, hundreds of Earth observation satellites have been launched to collect massive amounts of remote sensing images. However, the considerable cost and time to process the significant amount of data have become the greatest obstacle between data and knowledge. In order to accelerate the transformation from remote sensing images to urban thematic maps, a strategy to map the bare land automatically from Landsat imagery was developed and assessed in this study. First, a normalized difference bare land index (NBLI) was presented to maximally differentiate bare land from other land types in Wuhan City, China. Then, an unsupervised classifier was employed to extract the bare land from the NBLI image without training samples or self-assigned thresholds. Experimental results showed good performance on overall accuracy (92%), kappa coefficient (0.84), area ratio (1.1321), and match rate (83.96%), respectively. Results in multiple years disclosed that bare lands in the study site gradually moved from inner loops to the outer loops since 2007, in two main directions. This study demonstrated that the proposed method was an accurate and reliable option to extract the bare land, which led to a promising approach to mapping urban land use/land cover (LULC) automatically with simple indices.
The Huangtupo landslide is the volumetrically largest, most complex, and economically most significant landslide in the Three Gorges Reservoir Region. Detailed information about the character and dynamics of this tractive landslide is available because of access provided by a unique, 908-meter in situ research tunnel, augmented by long-term data provided by an extensive monitoring system for ground water levels, rainfall, and in situ deformation. Three major rupture surfaces plus 12 interlayer sliding zones (weak layers) were recognized during tunnel excavation, which also provided access and samples that establish a complex, multistage deformation history. Data from the in situ monitoring system shows that the toe of the landslide is creeping at a steady annual rate of about 25-30 mm, but at a slower rate of about 12 mm/year near the crown. However, the monthly creep rates are variable, being highest during May-August when rainfall is heavy and reservoir levels are low. Displacement-depth curves in the HZ6 borehole inclinometer establish that the creep of Slump Mass I# is most rapid above a depth of 37 m, where a major rupture zone occurs immediately above bedrock. Engineered defense structures along the toe of Huangtupo landslide can improve its stability to some extent. The effect of rapid changes of the reservoir level on landslide stability should be considered in reservoir management.
Debris flows occur in multiple surges. Boulders entrained within the flow have been reported to incapacitate structures within its flow path. Single-layer cushions, such as gabions, are often installed to shield debris-resisting barriers from boulder impact. However, most relevant works only focus on single impact and the performance of gabions subjected to successive loading is still not well understood. A new large-scale pendulum facility was established to induce impact energy of up to 70 kJ on an instrumented rigid barrier shielded by 1 m thick gabions. The response of the gabions under six successive impacts was investigated. Results show that the peak boulder impact force given by the Hertz equation is at least four times the measured values. The recommended load-reduction factor (Kc) used in practice can be reduced by a factor of two. After six successive impacts at an energy level of 70 kJ, the transmitted force increases by up to 40%. Based on the Swiss guidelines, a 13% increase of gabion thickness is required when successive impacts are concerned. The results presented in this paper will be useful for practitioners designing rigid barriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.