Nonlinear viscoelastic properties are reported for composites of fumed silica with various surface treatments and matrices of poly(vinyl acetate) of different molecular weights as well as a copolymer matrix of vinyl acetate and vinyl alcohol. Data above the glass transition temperature are reported here. The increase in the composite storage and loss moduli measured at low strains, and their relative rates of decrease with strain, are found to depend on filler surface treatment. The nonlinear behavior of the loss factor with strain is dramatically altered by filler treatment and quite revealing as to the likely mechanism causing the nonlinearity. In addition, the relative reinforcement and the degree of nonlinearity are found to be the highest for the lowest molecular weight matrices. The effect of copolymer substitution for the homopolymer matrix is equivalent to an increase in molecular weight. The primary underlying mechanism for reinforcement and nonlinear behavior appears to be the filler−matrix interactions, but not filler agglomeration or percolation. It is proposed that temporary (labile) bonding of chains to the filler surface results in trapped entanglements, having both near- and far-field effects on matrix chain motions. These trapped entanglements cause greatly enhanced non-Gaussian (Langevin) chain behavior that affects storage and loss moduli differently, resulting in very high reinforcement by nanofillers. Applied strain (stress) aids the release of the trapped entanglements, thereby leading to the reduction in dynamic moduli. The reinforcement and nonlinear viscoelastic properties of the nanofilled polymer melts bear striking similarity to what is observed in filled elastomers (the Payne effect), suggesting a common mechanism that is rooted in the macromolecular nature of the matrices.
Smart cyanine-grafted gadolinium oxide nanocrystals (Cy-GdNCs) obtained by albumin-based biomineralization are shown to be theranostic nanocomposites, with promising properties for trimodal near-infrared fluorescence/photoacoustics/magnetic-resonance imaging-guided photothermal tumor ablation.
We report a type of photosensitizer (PS)-loaded micelles integrating cyanine dye as potential theranostic micelles for precise anatomical tumor localization via dual photoacoustic (PA)/near-infrared fluorescent (NIRF) imaging modalities, and simultaneously superior cancer therapy via sequential synergistic photothermal therapy (PTT)/photodynamic therapy (PDT). The micelles exhibit enhanced photostability, cell internalization and tumor accumulation. The dual NIRF/PA imaging modalities of the micelles cause the high imaging contrast and spatial resolution of tumors, which provide precise anatomical localization of the tumor and its inner vasculature for guiding PTT/PDT treatments. Moreover, the micelles can generate severe photothermal damage on cancer cells and destabilization of the lysosomes upon PTT photo-irradiation, which subsequently facilitate synergistic photodynamic injury via PS under PDT treatment. The sequential treatments of PTT/PDT trigger the enhanced cytoplasmic delivery of PS, which contributes to the synergistic anticancer efficacy of PS. Our strategy provides a dual-modal cancer imaging with high imaging contrast and spatial resolution, and subsequent therapeutic synergy of PTT/PDT for potential multimodal theranostic application.
Smart nanocarriers are of particular interest as nanoscale vehicles of imaging and therapeutic agents in the field of theranostics. Herein, we report dually pH/reduction-responsive terpolymeric vesicles with monodispersive size distribution, which are constructed by assembling acetal- and disulfide-functionalized star terpolymer with near-infrared cyanine dye and anticancer drug. The vesicular nanostructure exhibits multiple theranostic features including on-demand drug releases responding to pH/reduction stimuli, enhanced photothermal conversion efficiency of cyanine dye, and efficient drug translocation from lysosomes to cytoplasma, as well as preferable cellular uptakes and biodistribution. These multiple theranostic features result in ultrahigh-contrast fluorescence imaging and thermo-chemotherapy-synergized tumor ablation. The dually stimuli-responsive vesicles represent a versatile theranostic approach for enhanced cancer imaging and therapy.
Photoconversion tunability of fluorophore dye is of great interest in cancer nanomedicine such as fluorescence imaging, photodynamic therapy (PDT), and photothermal therapy (PTT). Herein, this paper reports wavelength-dependent photoconversional polymeric vesicles of boron dipyrromethene (Bodipy) fluorophore for either PDT under 660 nm irradiation or PTT under 785 nm irradiation. After being assembled within polymeric vesicles at a high drug loading, Bodipy molecules aggregate in the conformations of both J-type and H-type, thereby causing red-shifted absorption into near-infrared region, ultralow radiative transition, and ideal resistance to photobleaching. Such vesicles further possess enhanced blood circulation, preferable tumor accumulation, as well as superior cell uptake as compared to free Bodipy. In particular, the vesicles mainly generate abundant intracellular singlet oxygen for PDT treatment under 660 nm irradiation, while they primarily produce a potent hyperthermia for PTT with tumor ablation through singlet oxygen-synergized photothermal necrosis under 785 nm irradiation. This approach provides a facile and general strategy to tune photoconversion characteristics of fluorophore dyes for wavelength-dependent photoinduced cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.