The dynamic interaction of the N- and C-terminal domains of mycobacterial F-ATP synthase subunit ε is proposed to contribute to efficient coupling of H+-translocation and ATP synthesis. Here, we investigate crosstalk between both subunit ε domains by introducing chromosomal atpC missense mutations in the C-terminal helix 2 of ε predicted to disrupt inter domain and subunit ε-α crosstalk and therefore coupling. The ε mutant εR105A,R111A,R113A,R115A (ε4A) showed decreased intracellular ATP, slower growth rates and lower molar growth yields on non-fermentable carbon sources. Cellular respiration and metabolism were all accelerated in the mutant strain indicative of dysregulated oxidative phosphorylation. The ε4A mutant exhibited an altered colony morphology and was hypersusceptible to cell wall-acting antimicrobials suggesting defective cell wall biosynthesis. In silico screening identified a novel mycobacterial F-ATP synthase inhibitor disrupting ε’s coupling activity demonstrating the potential to advance this regulation as a new area for mycobacterial F-ATP synthase inhibitor development.
In contrast to most bacteria, the mycobacterial F1FO‐ATP synthase (α3:β3:γ:δ:ε:a:b:b’:c9) does not perform ATP hydrolysis‐driven proton translocation. Although subunits α, γ and ε of the catalytic F1‐ATPase component α3:β3:γ:ε have all been implicated in the suppression of the enzyme’s ATPase activity, the mechanism remains poorly defined. Here, we brought the central stalk subunit ε into focus by generating the recombinant Mycobacterium smegmatis F1‐ATPase (MsF1‐ATPase), whose 3D low‐resolution structure is presented, and its ε‐free form MsF1αβγ, which showed an eightfold ATP hydrolysis increase and provided a defined system to systematically study the segments of mycobacterial ε’s suppression of ATPase activity. Deletion of four amino acids at ε’s N terminus, mutant MsF1αβγεΔ2‐5, revealed similar ATP hydrolysis as MsF1αβγ. Together with biochemical and NMR solution studies of a single, double, triple and quadruple N‐terminal ε‐mutants, the importance of the first N‐terminal residues of mycobacterial ε in structure stability and latency is described. Engineering ε’s C‐terminal mutant MsF1αβγεΔ121 and MsF1αβγεΔ103‐121 with deletion of the C‐terminal residue D121 and the two C‐terminal ɑ‐helices, respectively, revealed the requirement of the very C terminus for communication with the catalytic α3β3‐headpiece and its function in ATP hydrolysis inhibition. Finally, we applied the tools developed during the study for an in silico screen to identify a novel subunit ε‐targeting F‐ATP synthase inhibitor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.