A hippocampal mossy fiber synapse, which is implicated in learning and memory, has a complex structure in which mossy fiber boutons attach to the dendritic shaft by puncta adherentia junctions (PAJs) and wrap around a multiply-branched spine, forming synaptic junctions. Here, we electron microscopically analyzed the ultrastructure of this synapse in afadin-deficient mice. Transmission electron microscopy analysis revealed that typical PAJs with prominent symmetrical plasma membrane darkening undercoated with the thick filamentous cytoskeleton were observed in the control synapse, whereas in the afadin-deficient synapse, atypical PAJs with the symmetrical plasma membrane darkening, which was much less in thickness and darkness than those of the control typical PAJs, were observed. Immunoelectron microscopy analysis revealed that nectin-1, nectin-3, and N-cadherin were localized at the control typical PAJs, whereas nectin-1 and nectin-3 were localized at the afadin-deficient atypical PAJs to extents lower than those in the control synapse and N-cadherin was localized at their nonjunctional flanking regions. These results indicate that the atypical PAJs are formed by nectin-1 and nectin-3 independently of afadin and N-cadherin and that the typical PAJs are formed by afadin and N-cadherin cooperatively with nectin-1 and nectin-3. Serial block face-scanning electron microscopy analysis revealed that the complexity of postsynaptic spines and mossy fiber boutons, the number of spine heads, the area of postsynaptic densities, and the density of synaptic vesicles docked to active zones were decreased in the afadin-deficient synapse. These results indicate that afadin plays multiple roles in the complex ultrastructural morphogenesis of hippocampal mossy fiber synapses.
Chk1 (encoded by CHEK1 in mammals) is an evolutionarily conserved protein kinase that transduces checkpoint signals from ATR to Cdc25A during the DNA damage response (DDR). In mammals, Chk1 also controls cellular proliferation even in the absence of exogenous DNA damage. However, little is known about how Chk1 regulates unperturbed cell cycle progression, and how this effect under physiological conditions differs from its regulatory role in DDR. Here, we have established near-diploid HCT116 cell lines containing endogenous Chk1 protein tagged with a minimum auxin-inducible degron (mAID) through CRISPR/Cas9-based gene editing. Establishment of these cells enabled us to induce specific and rapid depletion of the endogenous Chk1 protein, which resulted in aberrant accumulation of DNA damage factors that induced cell cycle arrest at S or G2 phase. Cdc25A was stabilized upon Chk1 depletion before the accumulation of DNA damage factors. Simultaneous depletion of Chk1 and Cdc25A partially suppressed the defects caused by Chk1 single depletion. These results indicate that, similar to its function in DDR, Chk1 controls normal cell cycle progression mainly by inducing Cdc25A degradation.
The medial habenula (MHb), implicated in stress, depression, memory, and nicotine withdrawal syndromes, receives septal inputs and sends efferents to the interpeduncular nucleus. We previously showed that the immunoglobulin-like cell adhesion molecules (CAMs) nectin-2α and nectin-2δ are expressed in astrocytes in the brain, but their expression in neurons remains unknown. We showed here by immunofluorescence microscopy that nectin-2α, but not nectin-2δ, was prominently expressed in the cholinergic neurons in the developing and adult MHbs and localized at the boundary between the adjacent somata of the clustered cholinergic neurons where the voltage-gated A-type K channel Kv4.2 was localized. Analysis by immunoelectron microscopy on this boundary revealed that Kv4.2 was localized at the membrane specializations (MSs) with plasma membrane darkening in an asymmetrical manner, whereas nectin-2α was localized on the apposed plasma membranes mostly at the outside of these MSs, but occasionally localized at their edges and insides. Nectin-2α at this boundary was not colocalized with the nectin-2α-binding protein afadin, other CAMs, or their interacting peripheral membrane proteins, suggesting that nectin-2α forms a cell adhesion apparatus different from the Kv4.2-associated MSs. Genetic ablation of nectin-2 delayed the localization of Kv4.2 at the boundary between the adjacent somata of the clustered cholinergic neurons in the developing MHb. These results revealed the unique localization of nectin-2α and its regulatory role in the localization of Kv4.2 at the MSs in the MHb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.