Abstract-Different approaches are available to compensate gait in persons with spinal cord injury, including passive orthoses, functional electrical stimulation (FES), and robotic exoskeletons. However, several drawbacks arise from each specific approach. Orthotic gait is energy-demanding for the user and functionally ineffective. FES uses the muscles as natural actuators to generate gait, providing not only functional but also psychological benefits to the users. However, disadvantages are also related to the early appearance of muscle fatigue and the control of joint trajectories. Robotic exoskeletons that provide joint moment compensation or substitution to the body during walking have been developed in recent years. Significant advances have been achieved, but the technology itself is not mature yet because of many limitations related to both physical and cognitive interaction as well as portability and energy-management issues. Meanwhile, the combination of FES technology and exoskeletons has emerged as a promising approach to both gait compensation and rehabilitation, bringing together technologies, methods, and rehabilitation principles that can overcome the drawbacks of each individual approach. This article presents an overview of hybrid lower-limb exoskeletons, related technologies, and advances in actuation and control systems. Also, we highlight the functional assessment of individuals with spinal cord injury.
Gait analysis is necessary to diagnose movement disorders. In order to reduce the costs of three-dimensional motion capture systems, new low-cost methods of motion analysis have been developed. The purpose of this study was to evaluate the inter- and intra-rater reliability of Kinovea® and the agreement with a three-dimensional motion system for detecting the joint angles of the hip, knee and ankle during the initial contact phase of walking. Fifty healthy subjects participated in this study. All participants were examined twice with a one-week interval between the two appointments. The motion data were recorded using the VICON Motion System® and digital video cameras. The intra-rater reliability showed a good correlation for the hip, the knee and the ankle joints (Intraclass Correlation Coefficient, ICC > 0.85) for both observers. The ICC for the inter-rater reliability was >0.90 for the hip, the knee and the ankle joints. The Bland–Altman plots showed that the magnitude of disagreement was approximately ±5° for intra-rater reliability, ±2.5° for inter-rater reliability and around ±2.5° to ±5° for Kinovea® versus Vicon®. The ICC was good for the hip, knee and ankle angles registered with Kinovea® during the initial contact of walking for both observers (intra-rater reliability) and higher for the agreement between observers (inter-rater reliability). However, the Bland–Altman plots showed disagreement between observers, measurements and systems (Kinovea® vs. three-dimensional motion system) that should be considered in the interpretation of clinical evaluations.
This paper reviews the technological advances and clinical results obtained in the neuroprosthetic management of foot drop. Functional electrical stimulation has been widely applied owing to its corrective abilities in patients suffering from a stroke, multiple sclerosis, or spinal cord injury among other pathologies. This review aims at identifying the progress made in this area over the last two decades, addressing two main questions: What is the status of neuroprosthetic technology in terms of architecture, sensorization, and control algorithms?. What is the current evidence on its functional and clinical efficacy? The results reveal the importance of systems capable of self-adjustment and the need for closed-loop control systems to adequately modulate assistance in individual conditions. Other advanced strategies, such as combining variable and constant frequency pulses, could also play an important role in reducing fatigue and obtaining better therapeutic results. The field not only would benefit from a deeper understanding of the kinematic, kinetic and neuromuscular implications and effects of more promising assistance strategies, but also there is a clear lack of long-term clinical studies addressing the therapeutic potential of these systems. This review paper provides an overview of current system design and control architectures choices with regard to their clinical effectiveness. Shortcomings and recommendations for future directions are identified.
Tremor constitutes the most common motor disorder, and poses a functional problem to a large number of patients. Despite of the considerable experience in tremor management, current treatment based on drugs or surgery does not attain an effective attenuation in 25 % of patients, motivating the need for research in new therapeutic alternatives. In this context, this paper presents the concept design, development, and preliminary validation of a soft wearable robot for tremor assessment and suppression. The TREMOR neurorobot comprises a Brain Neural Computer Interface that monitors the whole neuromusculoskeletal system, aiming at characterizing both voluntary movement and tremor, and a Functional Electrical Stimulation system that compensates for tremulous movements without impeding the user perform functional tasks. First results demonstrate the performance of the TREMOR neurorobot as a novel means of assessing and attenuating pathological tremors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.