Background Zinc deficiency is commonly encountered in chronic kidney disease (CKD). The aims of this study were to assess whether zinc deficiency was related to increased renal excretion of zinc and to the progression of CKD. Methods Plasma and 24-h urinary zinc levels, urinary electrolytes and uromodulin were measured in 108 CKD patients and 81 individuals without CKD. Serum creatinine values were collected for 3 years to calculate the yearly change in estimated glomerular filtration rate (eGFR). Multivariable regression analysis was performed to assess the association between baseline zinc levels and yearly change in eGFR. Results CKD patients had lower circulating zinc levels and higher 24-h urinary zinc excretion than non-CKD participants (612.4 ± 425.9 versus 479.2 ± 293.0 µg/day; P = 0.02). Fractional excretion (FE) of zinc was higher and it significantly increased at more advanced CKD stages. Zinc FE was correlated negatively with 24-h urinary uromodulin excretion (r=−0.29; P < 0.01). Lower baseline plasma zinc levels were associated with a faster yearly decline of renal function in age, gender, diabetes and hypertension adjusted models, but this relationship was no longer significant when baseline eGFR or proteinuria were included. Conclusions Zinc levels are lower in CKD, and not compensated by reduced renal zinc excretion. The inverse association between urinary zinc excretion and uromodulin possibly points to an impaired tubular activity, which could partly account for zinc imbalance in CKD. These data suggest that zinc status is associated with renal function decline, but further studies elucidating the underlying mechanisms and the potential role of zinc supplements in CKD are needed.
Hypertension is the leading modifiable cause of premature death and hence one of the global targets of World Health Organization for prevention. Hypertension also affects the great majority of patients with chronic kidney disease (CKD). Both hypertension and CKD are intrinsically related, as hypertension is a strong determinant of worse renal and cardiovascular outcomes and renal function decline aggravates hypertension. This bidirectional relationship is well documented by the high prevalence of hypertension across CKD stages and the dual benefits of effective antihypertensive treatments on renal and cardiovascular risk reduction. Achieving an optimal blood pressure (BP) target is mandatory and requires several pharmacological and lifestyle measures. However, it also requires a correct diagnosis based on reliable BP measurements (eg, 24-hour ambulatory BP monitoring, home BP), especially for populations like patients with CKD where reduced or reverse dipping patterns or masked and resistant hypertension are frequent and associated with a poor cardiovascular and renal prognosis. Even after achieving BP targets, which remain debated in CKD, the residual cardiovascular risk remains high. Current antihypertensive options have been enriched with novel agents that enable to lower the existing renal and cardiovascular risks, such as SGLT2 (sodium-glucose cotransporter-2) inhibitors and novel nonsteroidal mineralocorticoid receptor antagonists. Although their beneficial effects may be driven mostly from actions beyond BP control, recent evidence underline potential improvements on abnormal 24-hour BP phenotypes such as nondipping. Other promising novelties are still to come for the management of hypertension in CKD. In the present review, we shall discuss the existing evidence of hypertension as a cardiovascular risk factor in CKD, the importance of identifying hypertension phenotypes among patients with CKD, and the traditional and novel aspects of the management of hypertensives with CKD.
BackgroundRenal microcirculation is essential for regulation of the glomerular filtration rate, the reabsorption of salt and water from the interstitium, and hence the blood pressure. Renal ultrasonography coupled to Doppler analysis and contrast-enhanced ultrasound enables the study of renal perfusion. So far, physiologic interventions have rarely been performed to assess the renal perfusion. The objective of our study was to measure the renal perfusion in response to a cold pressor test (CPT).MethodsHealthy adult participants were exposed to a 2 min CPT or a sham exposure (body temperature). Systemic hemodynamics, renal resistive index (RRI) and renal perfusion index (PI) were measured before and during the CPT or the sham exposure. Renal responses were compared using a paired Student's t-test or Wilcoxon signed rank test. Pearson correlation test was used to test association of variables of interest.ResultsForty-one normotensive participants (21 women) were included in the study. Mean blood pressure and heart rate both increased with the CPT. The RRI decreased from 0.60 ± 0.05 arbitrary units (AU) to 0.58 ± 0.05 AU (p < 0.05) and the PI increased from 2,074 AU (1,358–3,346) to 3,800 AU (2,118–6,399) (p < 0.05) (+66% (24–106%)). Compared to the sham exposure, the increase in PI with the CPT was more marked. There was a negative association between the increase in heart rate and mean blood pressure with the RRI (r: −0.550, p = 0.002 and r: −0.395, P = 0.016), respectively.ConclusionDoppler Ultrasound and CEUS enable the detection of physiological changes within the macro- and microvascular renal circulation. The CPT decreases the RRI and increases the PI. Whether these changes are present in pathological states such as diabetes or hypertension will need additional studies.
With chronic kidney disease (CKD) being a global arising health problem, strategies for delaying kidney disease progression and reducing the high cardiovascular risk inherent to CKD, are the main objectives of the actual management of patients with kidney diseases. In these patients, the control of arterial hypertension is essential, as high blood pressure (BP) is a strong determinant of worst cardiovascular and renal outcomes. Achieving target blood pressures recommended by international guidelines is mandatory and often demands a multiple levels management, including several pharmacological and lifestyle measures. Even in the presence of adequate BP control, the residual cardiovascular risk remains high. In this respect, the recent demonstration that novel agents such as sodium glucose transporter 2 (SGLT2) inhibitors or the new non-steroidal mineralocorticoid antagonist finerenone can retard the progression of kidney diseases and reduce cardiovascular mortality on top of standard of care treatment with renin-angiotensin system inhibitors represent enormous progresses. These studies also demonstrate that cardiovascular and renal protection can be obtained beyond blood pressure control. Other promising novelties are still to come such as renal denervation and endothelin receptor antagonists in the setting of diabetic and non-diabetic kidney diseases. In the present review, we shall discuss the classic and the new aspects for the management of hypertension in CKD, integrating the new data from recent clinical studies.
<b><i>Background:</i></b> Renal functional reserve (RFR), defined as the difference between stress and resting glomerular filtration rate (GFR), may constitute a diagnostic tool to identify patients at higher risk of developing acute kidney injury or chronic kidney disease. Blunted RFR has been demonstrated in early stages of hypertension and has been attributed to impaired vascular reactivity due to an overactive sympathetic nervous system (SNS). <b><i>Objective:</i></b> The purpose of this study was to investigate whether RFR correlates with other phenotypes expressing overactivity of the SNS in patients with essential hypertension and preserved renal function. <b><i>Methods:</i></b> Thirty-six patients with untreated essential hypertension and a GFR >60 mL/min/1.73 m<sup>2</sup> were enrolled. The following parameters were measured: RFR, 24-h ambulatory blood pressure (BP) profile, a treadmill stress test, and an echocardiographic examination. Urine and venous samples were obtained at specific time points for the determination of clinical parameters, and both resting and stress GFR were calculated by using endogenous creatinine clearance for the measurement of RFR after an acute oral protein load (1 g/kg). <b><i>Results:</i></b> Twenty-one patients had a RFR <30 mL/min/1.73 m<sup>2</sup> and 15 had a RFR above this cutoff. A nondipping pattern of 24-h BP was significantly more frequent in patients with low RFR (57.1 vs. 25.0%, <i>p</i> < 0.05 for systolic BP and 52.3 vs. 10.0%, <i>p</i> < 0.02 for diastolic BP). Moreover, patients with lower RFR values showed a blunted heart rate (HR) response to exercise during treadmill test (<i>r</i> = 0.439, <i>p</i> < 0.05). None of the echocardiographic parameters differed between the two groups of patients. <b><i>Conclusions:</i></b> In hypertensive patients with preserved GFR, reduced RFR is related to nondipping BP phenotype as well as to attenuated exercise HR response. Overactivity of the SNS may be a common pathway. Since loss of RFR may represent a risk factor for acute or chronic kidney injury, hypertensive patients with blunted RFR might need a more careful renal follow-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.