Recent developments in performance and practicality of optically-pumped magnetometers (OPMs) have enabled new capabilities in non-invasive brain function mapping through magnetoencephalography. In particular, the lack of cryogenic operating conditions allows for more flexible placement of sensor heads closer to the brain, leading to improved spatial resolution and source localisation capabilities. Through recording visually evoked brain fields (VEFs), we demonstrate that the closer sensor proximity can be exploited to improve temporal resolution. We use OPMs, and superconducting quantum interference devices (SQUIDs) for reference, to measure brain responses to flash and pattern reversal stimuli. We find highly reproducible signals with consistency across multiple participants, stimulus paradigms and sensor modalities. The temporal resolution advantage of OPMs is manifest in a twofold improvement, compared to SQUIDs. The capability for improved spatio-temporal signal tracing is illustrated by simultaneous vector recordings of VEFs in the primary and associative visual cortex, where a time lag on the order of 10–20 ms is consistently found. This paves the way for further spatio-temporal studies of neurophysiological signal tracking in visual stimulus processing, and other brain responses, with potentially far-reaching consequences for time-critical mapping of functionality in healthy and pathological brains.
Recent developments in performance and practicality of optically pumped magnetometers have enabled new capabilities in non-invasive brain function mapping through magnetoencephalography (MEG). In particular the lack of need of cryogenic operating conditions allows for more flexible placement of the sensor heads closer to the brain surface, leading to improved spatial measurement resolution and increased source localisation capabilities. Through recordings of visually evoked brain fields (VEF) we demonstrate that the greater sensor proximity can be further exploited to improve the temporal resolution. We use an OPM and for reference a superconducting quantum interference device (SQUID) setup to measure brain responses to standard flash and pattern reversal stimuli. We find highly reproducible signals with consistency across multiple healthy participants, stimulus paradigms and sensor modalities. The temporal resolution advantage of OPMs is manifest in a fourfold enhanced ratio of magnetic signal peak height to temporal width as compared to SQUIDs. The resulting capability of improved spatio-temporal signal tracing is illustrated by simultaneous vector recordings of VEFs in the V1 and V2 areas of the visual cortex, where a time lag on the order of 10-20 ms is consistently found. This paves the way for further studies of spatio-temporal neurophysiological signal tracking in visual stimulus processing and other brain responses with potentially far-reaching consequences for time-critical mapping of functionality in the healthy and pathological brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.