Recent reports have shown a strong association between obesity and the severity of COVID-19 infection, even in the absence of other comorbidities. After infecting the host cells, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may cause a hyperinflammatory reaction through the excessive release of cytokines, a condition known as “cytokine storm,” while inducing lymphopenia and a disrupted immune response. Obesity is associated with chronic low-grade inflammation and immune dysregulation, but the exact mechanisms through which it exacerbates COVID-19 infection are not fully clarified. The production of increased amounts of cytokines such as TNFα, IL-1, IL-6, and monocyte chemoattractant protein (MCP-1) lead to oxidative stress and defective function of innate and adaptive immunity, whereas the activation of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome seems to play a crucial role in the pathogenesis of the infection. Endothelial dysfunction and arterial stiffness could favor the recently discovered infection of the endothelium by SARS-CoV-2, whereas alterations in cardiac structure and function and the prothrombotic microenvironment in obesity could provide a link for the increased cardiovascular events in these patients. The successful use of anti-inflammatory agents such as IL-1 and IL-6 blockers in similar hyperinflammatory settings, like that of rheumatoid arthritis, has triggered the discussion of whether such agents could be administrated in selected patients with COVID-19 disease.
SARS-CoV-2 infection may lead to endothelial and vascular dysfunction. We investigated alterations of arterial stiffness, endothelial coronary and myocardial function markers 4 months after COVID-19 infection.
Background We investigated the effects of insulin, glucagon‐like peptide‐1 receptor agonists ( GLP ‐1 RA ), sodium‐glucose cotransporter‐2 inhibitors ( SGLT ‐2i), and their combination on vascular and cardiac function of patients with type 2 diabetes mellitus. Methods and Results A total of 160 patients with type 2 diabetes mellitus were randomized to insulin (n=40), liraglutide (n=40), empagliflozin (n=40), or their combination ( GLP ‐1 RA + SGLT ‐2i) (n=40) as add‐on to metformin. We measured at baseline and 4 and 12 months posttreatment: (a) perfused boundary region of the sublingual arterial microvessels (marker of endothelial glycocalyx thickness), (b) pulse wave velocity ( PWV ) and central systolic blood pressure, (c) global left ventricular longitudinal, circumferential, and radial strain, (d) myocardial work index (global work index) derived by pressure‐myocardial strain loops using speckle tracking imaging. Twelve months posttreatment, all patients improved perfused boundary region, PWV , global longitudinal strain, global circumferential strain, and global radial strain ( P <0.05). GLP ‐1 RA , SGLT ‐2i, and their combination showed a greater reduction of perfused boundary region, PWV, and central systolic blood pressure than insulin, despite a similar glycosylated hemoglobin reduction ( P <0.05). GLP ‐1 RA or GLP ‐1 RA + SGLT ‐2i provided a greater increase of global work index (12.7% and 17.4%) compared with insulin or SGLT ‐2i (3.1% and 2%). SGLT ‐2i or GLP ‐1 RA and SGLT ‐2i showed a greater decrease of PWV (10.1% and 13%) and central and brachial systolic blood pressure than insulin or GLP ‐1 RA ( PWV , 3.6% and 8.6%) ( P <0.05 for all comparisons). The dual therapy showed the greatest effect on measured markers in patients with left ventricular ejection fraction <55% ( P <0.05). Conclusions Twelve‐month treatment with GLP ‐1 RA , SGLT ‐2i, and their combination showed a greater improvement of vascular markers and effective cardiac work than insulin treatment in type 2 diabetes mellitus. The combined therapy as second line was superior to either ins...
Glucose levels in blood must be constantly maintained within a tight physiological range to sustain anabolism. Insulin regulates glucose homeostasis via its effects on glucose production from the liver and kidneys and glucose disposal in peripheral tissues (mainly skeletal muscle). Blood levels of glucose are regulated simultaneously by insulin-mediated rates of glucose production from the liver (and kidneys) and removal from muscle; adipose tissue is a key partner in this scenario, providing nonesterified fatty acids (NEFA) as an alternative fuel for skeletal muscle and liver when blood glucose levels are depleted. During sleep at night, the gradual development of insulin resistance, due to growth hormone and cortisol surges, ensures that blood glucose levels will be maintained within normal levels by: (a) switching from glucose to NEFA oxidation in muscle; (b) modulating glucose production from the liver/kidneys. After meals, several mechanisms (sequence/composition of meals, gastric emptying/intestinal glucose absorption, gastrointestinal hormones, hyperglycemia mass action effects, insulin/glucagon secretion/action, de novo lipogenesis and glucose disposal) operate in concert for optimal regulation of postprandial glucose fluctuations. The contribution of the liver in postprandial glucose homeostasis is critical. The liver is preferentially used to dispose over 50% of the ingested glucose and restrict the acute increases of glucose and insulin in the bloodstream after meals, thus protecting the circulation and tissues from the adverse effects of marked hyperglycemia and hyperinsulinemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.