We sophisticate a fluid-solid growth computational framework for modelling aneurysm evolution. A realistic structural model of the arterial wall is integrated into a patient-specific geometry of the vasculature. This enables physiologically representative distributions of haemodynamic stimuli, obtained from a rigid-wall computational fluid dynamics analysis, to be linked to growth and remodelling algorithms. Additionally, a quasistatic structural analysis quantifies the cyclic deformation of the arterial wall so that collagen growth and remodelling can be explicitly linked to the cyclic deformation of vascular cells. To simulate aneurysm evolution, degradation of elastin is driven by reductions in wall shear stress (WSS) below homeostatic thresholds. Given that the endothelium exhibits spatial and temporal heterogeneity, we propose a novel approach to define the homeostatic WSS thresholds: We allow them to be spatially and temporally heterogeneous. We illustrate the application of this novel fluid-solid growth framework to model abdominal aortic aneurysm (AAA) evolution and to examine how the influence of the definition of the WSS homeostatic threshold influences AAA progression. We conclude that improved understanding and modelling of the endothelial heterogeneity is important for modelling aneurysm evolution and, more generally, other vascular diseases where haemodynamic stimuli play an important role.
Background: Measuring the extent to which renal artery stenosis (RAS) alters renal haemodynamics may permit precision medicine by physiologically guided revascularization. This currently requires invasive intra-arterial pressure measurement with associated risks and is rarely performed. The present proof-of-concept study investigates an in silico approach that uses computational fluid dynamic (CFD) modeling to non-invasively estimate renal artery haemodynamics from routine anatomical computed tomography (CT) imaging of RAS.Methods: We evaluated 10 patients with RAS by CT angiography. Intra-arterial renal haemodynamics were invasively measured by a transducing catheter under resting and hyperaemic conditions, calculating the translesional ratio of distal to proximal pressure (Pd/Pa). The diagnostic and quantitative accuracy of the CFD-derived virtual Pd/Pa ratio (vPd/Pa) was evaluated against the invasively measured Pd/Pa ratio (mPd/Pa).Results: Hyperaemic haemodynamics was infeasible and CT angiography in 4 patients had insufficient image resolution. Resting flow data is thus reported for 7 stenosed arteries from 6 patients (one patient had bilateral RAS). The comparison showed a mean difference of 0.015 (95% confidence intervals of ± 0.08), mean absolute error of 0.064, and a Pearson correlation coefficient of 0.6, with diagnostic accuracy for a physiologically significant Pd/Pa of ≤ 0.9 at 86%.Conclusion: We describe the first in silico estimation of renal artery haemodynamics from CT angiography in patients with RAS, showing it is feasible and diagnostically accurate. This provides a methodological framework for larger prospective studies to ultimately develop non-invasive precision medicine approaches for studies and interventions of RAS and resistant hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.