Feta is a Greek protected designation of origin (PDO) brined curd white cheese made from small ruminants’ milk. In the present research, Greek Feta cheese bacterial diversity was evaluated via matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). Analysis of 23 cheese samples, produced in different regions of the country, was performed in two ripening times (three or six months post-production). The identified microbiota were primarily constituted of lactic acid bacteria. A total of 13 different genera were obtained. The dominant species in both ripening times were Lactobacillus plantarum (100.0% and 87.0%, at three or six months post-production, respectively), Lactobacillus brevis (56.5% and 73.9%), Lactobacillus paracasei (56.5% and 39.1%), Lactobacillus rhamnosus (13.0% and 17.4%), Lactobacillus paraplantarum (4.3% and 26.1%), Lactobacillus curvatus (8.7% and 8.7%). Other species included Enterococcus faecalis (47.8% and 43.5%), Enterococcus faecium (34.8% and 17.4%), Enterococcus durans (13.0% and 17.4%), Enterococcus malodoratus (4.3% and 4.3%), and Streptococcus salivarius subsp. thermophilus (21.7% and 30.4%). The increased ripening time was found to be correlated to decreased total solids (r = 0.616; p = 0.002), protein (r = 0.683; p < 0.001), and PH (r = 0.780; p < 0.001). The results of this study contribute to a better understanding of the core microbiota of Feta cheese.
Kefalograviera is a well-known hard Greek cheese. The aim of this study was to determine how milk produced from ewes fed omega-3-enriched diets could influence the microbiota as well as the chemical composition of Kefalograviera cheese. At the start of the trial, 30 dairy ewes (Lesvos and Chios crossbreed) were selected and fed a conventional diet, based on alfalfa hay, straw and concentrate feed that contained soybean meal for a period of thirty days. Then, for a period of sixty days the same ewes were fed an omega-3-enriched concentrate feed with a lower level of soybean meal that contained 10% flaxseed and 10% lupins. Milk yield was collected individually on Days 30, 60 and 90 and used to produce three different batches of Kefalograviera cheeses, at the same cheese factory, by using a traditional recipe and identical preparation conditions (pasteurization of milk, salt, rennet and culture). Sample analysis was done after six months of Kefalograviera cheese ripening. MALDI-TOF-MS (matrix-assisted laser desorption/ionization time of flight mass spectrometry) identification was performed by contrasting the samples’ mass spectra with the corresponding reference database. The correlation between the different Kefalograviera cheeses revealed the predominant species being Lactococcus lactis, Lactobacillus rhamnosus, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus paracasei, Enterococcus faecium and Enterococcus faecalis, with significant quantitative differences between the experimental groups and the controls. Pediococcus spp. was isolated only from the experimental groups’ cheeses and Staphylococcus spp. only from the controls’ cheese, suggesting—among other differences—a bacterial microbiota distinction between the groups. Moreover, increased levels of alpha-linolenic acid and total polyunsaturated omega-3 fatty acids were noted in the enriched Kefalograviera cheeses. These promising findings suggest that enriched Kefalograviera cheese could be manufactured via enriching the ewes’ diets, with potential benefits for the consumers’ health.
The Gram-negative bacterium Riemerella anatipestifer (RA) is known to cause clinical disease with severe economic impacts primarily in ducks and less frequently in geese and turkeys. RA was isolated and identified in broiler chickens, from a clinical case in a commercial broiler farm located in the southwest mainland of Greece. The morbidity and the mortality in the broiler house were estimated at 10% and 5% respectively. The observed clinical signs appeared at the age of 30 to 42 days with respiratory distress (dyspnea), white fluid feces and stunting. Post-mortem examinations displayed serositis, pericarditis, perihepatitis and airsacculitis. Edematous swelling around the tibio-tarsal joints was observed in some birds. Tissue samples from lesions were streaked on selective media. Three bacterial isolates were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Moreover, an antibiogram analysis was performed for the three RA strains, using a pattern of 16 common antibiotics to advocate the most effective drugs for a proper treatment. All the RA isolates were sensitive to ceftiofur, sulphamethoxazole–trimethoprim and amoxicillin, whereas all were resistant to gentamicin, tylosin, tetracyclin, colistin sulphate, spectinomycin, lincomycin and oxytetracycline.
Staphylococcus spp. is an important mastitis-inducing zoonotic pathogen in goats and is associated with antimicrobial resistance (AMR). The objectives of this study were to determine the prevalence and composition of staphylococci in individual mammary secretion (MS) samples of clinically healthy goats and to evaluate the phenotypic AMR pattern and the presence of methicillin resistance in the Staphylococcus spp. strains. Staphylococcus spp. isolates (n = 101) from the MS samples (n = 220) were identified to species level using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The antimicrobial susceptibility testing included a disk diffusion assay and the determination of the minimum inhibitory concentrations (MIC) of resistant strains (n = 46). Presumptive methicillin-resistant strains (n = 9) were assessed for the presence of mecA, mecC and SCCmec/orfx genes. Staphylococcus spp. isolates were recovered from 45.9% of the MS samples, of which, 72.3% was identified as coagulase-negative staphylococci (CoNS), with the remaining being Staphylococcus aureus. CoNS and S. aureus were most commonly resistant to ampicillin (56.2% and 57.1%, respectively), penicillin (26.0% and 39.3%, respectively), amoxicillin (26 % and 25 %, respectively) and cephalexin (12.3% and 25%, respectively) in the disk diffusion method. CoNS exhibited a broader AMR pattern and a higher percentage of resistant strains than S. aureus in the disk diffusion and MIC methods. Of the nine oxacillin- and cefoxitin-resistant strains, three S. aureus and five CoNS strains carried the mecA gene and, thus, were identified as methicillin-resistant. The mecC gene was not found in any of the studied strains. The presence of AMR and methicillin resistance in caprine S. aureus and CoNS poses a concern for animal and public health.
The purpose of this study was to determine for the first time the microbiota in artisanal-type and industrial-type Gidotyri cheeses and investigate the influence of the cheese-making practices on their composition using culture-independent techniques. The microbiota present in artisanal with commercial starters (Artisanal_CS, n = 15), artisanal with in-house starters (Artisanal_IHS, n = 10) and industrial (Ind., n = 9) Gidotyri cheese samples were analyzed using a targeted metagenomic approach (16S rRNA gene). The Ind. Gidotyri cheese microbiota were less complex, dominated by the Streptococcaceae family (91%) that was more abundant compared to the artisanal Gidotyri cheeses (p < 0.05). Artisanal cheeses were more diverse compositionally with specific bacterial species being prevalent to each subtype. Particularly, Loigolactobacillus coryniformis (OTU 175), Secundilactobacillus malefermentans (OTU 48), and Streptococcus parauberis (OTU 50) were more prevalent in Artisanal_IHS cheeses compared to Artisanal_CS (p ≤ 0.001) and Ind. (p < 0.01) Gidotyri cheeses. Carnobacterium maltaromaticum (OTU 23) and Enterobacter hormaechei subsp. hoffmannii (OTU 268) were more prevalent in Artisanal_CS cheeses compared to Artisanal_IHS cheeses (p < 0.05) and Ind. cheeses (p < 0.05). Hafnia alvei (OTU 13) and Acinetobacter colistiniresistens (OTU 111) tended to be more prevalent in Artisanal_CS compared to the other two cheese groups (p < 0.10). In conclusion, higher microbial diversity was observed in the artisanal-type Gidotyri cheeses, with possible bacterial markers specific to each subtype identified with potential application to traceability of the manufacturing processes’ authenticity and cheese quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.