Mortality of patients with breast cancer is due overwhelmingly to metastatic spread of the disease. Although dissemination is an early event in breast cancer, extended periods of cancer cell dormancy can result in long latency of metastasis development. Deciphering the mechanisms underlying cancer cell dormancy and subsequent growth at the metastatic site would facilitate development of strategies to interfere with these processes. A challenge in this undertaking has been the lack of models for cancer cell dormancy. We have established novel experimental systems that model the bone microenvironment of the breast cancer metastatic niche. These systems are based on 3D cocultures of breast cancer cells with cell types predominant in bone marrow. We identified conditions in which cancer cells are dormant and conditions in which they proliferate. Dormant cancer cells were able to proliferate upon transfer into supportive microenvironment or upon manipulation of signaling pathways that control dormancy. These experimental systems will be instrumental for metastasis studies, particularly the study of cellular dormancy. Cancer Res; 73(23); 6886-99. Ó2013 AACR.
Cancer cells are thought to use actin rich invadopodia to facilitate matrix degradation. Formation and maturation of invadopodia requires the co-ordained activity of Rho-GTPases, however the molecular mechanisms that underlie the invadopodia lifecycle are not fully elucidated. Previous work has suggested a formation and disassembly role for Rho family effector p-21 activated kinase 1 (PAK1) however, related family member PAK4 has not been explored. Systematic analysis of isoform specific depletion using in vitro and in vivo invasion assays revealed there are differential invadopodia-associated functions. We consolidated a role for PAK1 in the invadopodia formation phase and identified PAK4 as a novel invadopodia protein that is required for successful maturation. Furthermore, we find that PAK4 (but not PAK1) mediates invadopodia maturation likely via inhibition of PDZ-RhoGEF. Our work points to an essential role for both PAKs during melanoma invasion but provides a significant advance in our understanding of differential PAK function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.