Background/Aim: Hypertriglyceridemia is rare and can provoke acute severe hyperlipidemic pancreatitis when triglyceride levels exceed 11.3 mmol/l. In 10 patients we evaluated the therapeutic guidelines for severe hyperlipidemic pancreatitis. Methods: Ten patients (8 men and 2 women) were admitted to the intensive care unit with a diagnosis of acute severe hyperlipidemic pancreatitis. They underwent standard treatment. Heparin, insulin and antihyperlipidemic drugs were used to lower the triglyceride levels. The patients underwent plasmapheresis within 48 h of admission, and fat-free parenteral nutrition was used. Two of the patients underwent surgery because of infection of necrotic segments. Results: Standard treatment was essential for all the patients but plasmapheresis was the procedure that lowered the triglyceride and lipid levels in all cases. It improved abdominal pain, clinical state, and signs and symptoms of the disease. Two patients underwent surgery due to infection of the necrotic segments and one of them died. Follow-up lasted 4–54 months with no recurrences of pancreatitis. Conclusion: Our study shows that standard treatment is essential, but plasmapheresis successfully lowered lipid levels with no complications and relieved the patients from the symptoms in the acute phase of the disease. Hyperlipidemic pancreatitis should initially be treated conservatively. Plasmapheresis is a method that has lately been used successfully for hyperlipidemic pancreatitis. It seems that all therapeutic measures should be applied as early as possible, within the first 48 h.
Purpose In the critically ill, hospital-acquired bloodstream infections (HA-BSI) are associated with significant mortality. Granular data are required for optimizing management, and developing guidelines and clinical trials. Methods We carried out a prospective international cohort study of adult patients (≥ 18 years of age) with HA-BSI treated in intensive care units (ICUs) between June 2019 and February 2021. Results 2600 patients from 333 ICUs in 52 countries were included. 78% HA-BSI were ICU-acquired. Median Sequential Organ Failure Assessment (SOFA) score was 8 [IQR 5; 11] at HA-BSI diagnosis. Most frequent sources of infection included pneumonia (26.7%) and intravascular catheters (26.4%). Most frequent pathogens were Gram-negative bacteria (59.0%), predominantly Klebsiella spp. (27.9%), Acinetobacter spp . (20.3%), Escherichia coli (15.8%), and Pseudomonas spp . (14.3%). Carbapenem resistance was present in 37.8%, 84.6%, 7.4%, and 33.2%, respectively. Difficult-to-treat resistance (DTR) was present in 23.5% and pan-drug resistance in 1.5%. Antimicrobial therapy was deemed adequate within 24 h for 51.5%. Antimicrobial resistance was associated with longer delays to adequate antimicrobial therapy. Source control was needed in 52.5% but not achieved in 18.2%. Mortality was 37.1%, and only 16.1% had been discharged alive from hospital by day-28. Conclusions HA-BSI was frequently caused by Gram-negative, carbapenem-resistant and DTR pathogens. Antimicrobial resistance led to delays in adequate antimicrobial therapy. Mortality was high, and at day-28 only a minority of the patients were discharged alive from the hospital. Prevention of antimicrobial resistance and focusing on adequate antimicrobial therapy and source control are important to optimize patient management and outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s00134-022-06944-2.
Hospital-acquired infections, particularly in the critical care setting, have become increasingly common during the last decade, with Gram-negative bacterial infections presenting the highest incidence among them. Multi-drug-resistant (MDR) Gram-negative infections are associated with high morbidity and mortality with significant direct and indirect costs resulting from long hospitalization due to antibiotic failure. Time is critical to identifying bacteria and their resistance to antibiotics due to the critical health status of patients in the intensive care unit (ICU). As common antibiotic resistance tests require more than 24 h after the sample is collected to determine sensitivity in specific antibiotics, we suggest applying machine learning (ML) techniques to assist the clinician in determining whether bacteria are resistant to individual antimicrobials by knowing only a sample’s Gram stain, site of infection, and patient demographics. In our single center study, we compared the performance of eight machine learning algorithms to assess antibiotic susceptibility predictions. The demographic characteristics of the patients are considered for this study, as well as data from cultures and susceptibility testing. Applying machine learning algorithms to patient antimicrobial susceptibility data, readily available, solely from the Microbiology Laboratory without any of the patient’s clinical data, even in resource-limited hospital settings, can provide informative antibiotic susceptibility predictions to aid clinicians in selecting appropriate empirical antibiotic therapy. These strategies, when used as a decision support tool, have the potential to improve empiric therapy selection and reduce the antimicrobial resistance burden.
Hospital-acquired infections, particularly in the critical care setting, are becoming increasingly common during the last decade, with Gram-negative bacterial infections presenting the highest incidence among them. Multi-drug-resistant (MDR) Gram-negative infections are associated with high morbidity and mortality, with significant direct and indirect costs resulting from long hospitalization due to antibiotic failure. As treatment options become limited, antimicrobial stewardship programs aim to optimize the appropriate use of currently available antimicrobial agents and decrease hospital costs. Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae are the most common resistant bacteria encountered in intensive care units (ICUs) and other wards. To establish preventive measures, it is important to know the prevalence of Gram-negative isolated bacteria and antibiotic resistance profiles in each ward separately, compared with ICUs. In our single centre study, we compared the resistance levels per antibiotic of P. aeruginosa, A. baumannii and K.pneumoniae clinical strains between the ICU and other facilities during a 2-year period in one of the largest public tertiary hospitals in Greece. The analysis revealed a statistically significant higher antibiotic resistance of the three bacteria in the ICU isolates compared with those from other wards. ICU strains of P. aeruginosa presented the highest resistance rates to gentamycin (57.97%) and cefepime (56.67%), followed by fluoroquinolones (55.11%) and carbapenems (55.02%), while a sensitivity rate of 97.41% was reported to colistin. A high resistance rate of over 80% of A. baumannii isolates to most classes of antibiotics was identified in both the ICU environment and regular wards, with the lowest resistance rates reported to colistin (53.37% in ICU versus an average value of 31.40% in the wards). Statistically significant higher levels of resistance to most antibiotics were noted in ICU isolates of K. pneumoniae compared with non-ICU isolates, with the highest difference—up to 48.86%—reported to carbapenems. The maximum overall antibiotic resistance in our ICU was reported for Acinetobacter spp. (93.00%), followed by Klebsiella spp. (72.30%) and Pseudomonas spp. (49.03%).
Objectives: In the era of increasing antimicrobial resistance, the need for early identification and prompt treatment of multi-drug-resistant infections is crucial for achieving favorable outcomes in critically ill patients. As traditional microbiological susceptibility testing requires at least 24 hours, automated machine learning (AutoML) techniques could be used as clinical decision support tools to predict antimicrobial resistance and select appropriate empirical antibiotic treatment.Methods: An antimicrobial susceptibility dataset of 11,496 instances from 499 patients admitted to the internal medicine wards of a public hospital in Greece was processed by using Microsoft Azure AutoML to evaluate antibiotic susceptibility predictions using patients’ simple demographic characteristics, as well as previous antibiotic susceptibility testing, without any concomitant clinical data. Furthermore, the balanced dataset was also processed using the same procedure. The datasets contained the attributes of sex, age, sample type, Gram stain, 44 antimicrobial substances, and the antibiotic susceptibility results.Results: The stack ensemble technique achieved the best results in the original and balanced dataset with an area under the curve-weighted metric of 0.822 and 0.850, respectively.Conclusions: Implementation of AutoML for antimicrobial susceptibility data can provide clinicians useful information regarding possible antibiotic resistance and aid them in selecting appropriate empirical antibiotic therapy by taking into consideration the local antimicrobial resistance ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.