ADAMs (a disintegrin and metalloproteinases) are multifunctional molecules involved in cell-cell fusion, cell adhesion, membrane protein shedding, and proteolysis. In the present study, we examined the mRNA expression of 13 different ADAM species with putative metalloproteinase activity in human astrocytic tumors, nonneoplastic brain tissues, and other intracranial tumors by reverse transcriptase-polymerase chain reaction, and found that prototype membrane-anchored ADAM12 (ADAM12m) is predominantly expressed in glioblastomas. Real-time quantitative polymerase chain reaction indicated that the expression level of ADAM12m is remarkably at least 5.7-fold higher in glioblastomas (n ؍ 16) than in nonneoplastic brain tissues (n ؍ 6), low grade (n ؍ 7) and anaplastic astrocytic tumors (n ؍ 9) (P < 0.05 for each group), and intracranial neurinomas (n ؍ 5) (P < 0.01). In situ hybridization showed that glioblastoma cells are responsible for the gene expression. ADAMs (a disintegrin and metalloproteinases) are a gene family of multidomain membrane-anchored proteins comprising of more than 30 members in various animal species (see http://www.people.virginia.edu/ϳjw7g/Tableof theADAMs.html) and are implicated in pathophysiological conditions, which include neuronal development, 1 cancer development and progression, 2,3 and inflammatory responses 4 through proteolysis, cell adhesion, cell fusion, and cell-matrix interaction. 5,6 They contain several distinct domains with structural homology to the reprolysin/adamalysin family of snake venom metalloproteinases.7 A typical ADAM protein includes an N-terminal signal peptide, and propeptide, metalloproteinase, disintegrin, cysteine-rich, epidermal growth factor-like, transmembrane, and cytoplasmic domains. The metalloproteinase domains of several ADAMs have a catalytic site with the conventional zinc-dependent metalloproteinase sequence (HEXGHXXGXXHD), which is highly homologous to that of the matrix metalloproteinases (MMPs).
Background:Intra-articular injection of hyaluronan (HA) has been suggested to have a disease-modifying effect in osteoarthritis, but little is known about the possible mechanisms.Objective:To investigate the effects of HA species of different molecular mass, including 800 kDa (HA800) and 2700 kDa (HA2700), on the expression of aggrecanases (ie, ADAMTS species), which play a key role in aggrecan degradation.Methods:The effects of HA species on the expression of ADAMTS1, 4, 5, 8, 9 and 15 in interleukin 1α (IL1α)-stimulated osteoarthritic chondrocytes were studied by reverse transcription PCR and real-time PCR. Expression of ADAMTS4 protein and aggrecanase activity and signal transduction pathways of IL1, CD44 and intracellular adhesion molecule 1 (ICAM1) were examined by immunoblotting.Results:IL1α treatment of chondrocytes induced ADAMTS4, and HA800 and HA2700 significantly decreased IL1α-induced expression of ADAMTS4 mRNA and protein. IL1α-stimulated aggrecanase activity in osteoarthritic chondrocytes was reduced by treatment with HA2700 or transfection of small interfering RNA for ADAMTS4. A similar result was obtained when HA2700 was added to explant cultures of osteoarthritic cartilage. HA2700 neither directly inhibited nor bound to ADAMTS4. Downregulation of ADAMTS4 expression by HA2700 was attenuated by treatment of IL1α-treated chondrocytes with antibodies to CD44 and/or ICAM1. The increased phosphorylation of IL1 receptor-associated kinase-1 and extracellular signal-regulated protein kinase1/2 induced by the IL1α treatment was downregulated by enhanced IRAK-M expression after HA2700 treatment.Conclusion:These data suggest that HA2700 suppresses aggrecan degradation by downregulating IL1α-induced ADAMTS4 expression through the CD44 and ICAM1 signalling pathways in osteoarthritic chondrocytes.
A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)1, 4, 5, 8, 9 and 15, members of the ADAMTS gene family, have the ability to degrade a major cartilage proteoglycan, aggrecan, at the specific sites, and thus are called 'aggrecanases'. The expression of these ADAMTS species was examined in human osteoarthritic articular cartilage on reverse transcription-polymerase chain reaction. The results demonstrated the predominant expression of ADAMTS4 in osteoarthritic cartilage, while ADAMTS5 was constitutively expressed in osteoarthritic and normal cartilage. ADAMTS9 was expressed mainly in normal cartilage, whereas no or negligible expression of ADAMTS1, 8 and 15 was observed in either osteoarthritic or normal cartilage. In situ hybridization for ADAMTS4 indicated that chondrocytes in osteoarthritic cartilage expressed the mRNA. Two monoclonal antibodies to ADAMTS4 were developed, and immunolocalized ADAMTS4 to chondrocytes in the proteoglycan-depleted zones of osteoarthritic cartilage, showing a direct correlation with the Mankin scores. Immunoblotting indicated a major protein band of 58 kDa in the chondrocyte culture media and osteoarthritic cartilage tissue homogenates. These data demonstrate that among the six ADAMTS species, ADAMTS4 is mainly expressed in an active form in osteoarthritic cartilage, and suggest that ADAMTS4 may play an important role in the degradation of aggrecan in human osteoarthritic cartilage.
Objective. ADAMs are a gene family of multifunctional proteins. We undertook this study to determine which ADAM species is up-regulated in osteoarthritic (OA) cartilage and to examine its pathobiologic function.Methods. Expression of the 13 different metalloproteinase-type ADAMs was screened by reverse transcription-polymerase chain reaction (PCR), and expression levels of prototype membrane-anchored ADAM-12 (ADAM-12m) were determined by real-time PCR. ADAM-12m expression in articular cartilage was examined by in situ hybridization, immunohistochemistry, and immunoblotting. Chondrocytes were used for functional analyses of ADAM-12m.Results. ADAM-12m was selectively expressed in 87% of OA cartilage, and the expression level was significantly higher in OA cartilage than in normal cartilage. In situ hybridization showed that OA chondrocytes were responsible for the expression. Osteoarthritis (OA) is characterized by the breakdown of articular cartilage, leading to pain and loss of joint function. Articular cartilage is a narrow layer of specialized extracellular matrix, consisting primarily of collagens and proteoglycans, that is elaborated and maintained by a small number of articular chondrocytes. In normal cartilage, chondrocytes sustain a balance between the synthesis and the degradation of matrix components, resulting in stability of the tissue over time. This equilibrium is disturbed in degenerative joint diseases such as OA (1). Chondrocyte cloning, also known as chondrocyte cluster formation, is a major characteristic phenotype of OA cartilage (2), and it could reflect
Myosin light chain (MLC) phosphorylation plays important roles in various cellular functions such as cellular morphogenesis, motility, and smooth muscle contraction. MLC phosphorylation is determined by the balance between activities of Rho-associated kinase (Rho-kinase) and myosin phosphatase. An impaired balance between Rho-kinase and myosin phosphatase activities induces the abnormal sustained phosphorylation of MLC, which contributes to the pathogenesis of certain vascular diseases, such as vasospasm and hypertension. However, the dynamic principle of the system underlying the regulation of MLC phosphorylation remains to be clarified. Here, to elucidate this dynamic principle whereby Rho-kinase regulates MLC phosphorylation, we developed a mathematical model based on the behavior of thrombin-dependent MLC phosphorylation, which is regulated by the Rho-kinase signaling network. Through analyzing our mathematical model, we predict that MLC phosphorylation and myosin phosphatase activity exhibit bistability, and that a novel signaling pathway leading to the auto-activation of myosin phosphatase is required for the regulatory system of MLC phosphorylation. In addition, on the basis of experimental data, we propose that the auto-activation pathway of myosin phosphatase occurs in vivo. These results indicate that bistability of myosin phosphatase activity is responsible for the bistability of MLC phosphorylation, and the sustained phosphorylation of MLC is attributed to this feature of bistability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.