This paper proposes a novel approach to forecast congestions in high-voltage grids with high shares of distributed photovoltaic (PV) infeed. The approach is based on a physical PV model using intra-day numerical weather prediction (NWP) input data. Subsequently, probabilistic forecasts are generated based on Kernel density estimators (KDE) and Copula, describing the multivariate spatial dependencies for the marginal distributions of forecasting and approximation errors. Finally, a probabilistic power flow (PPF) using a linearized AC version is proposed, combining the benefits of high accuracy with high computational performance. To assess and quantify the overall advantages of this approach, a case study is carried out for an existing power system.
This paper proposes a novel approach to forecast congestions in high-voltage grids with high shares of distributed photovoltaic (PV) infeed. The approach is based on a physical PV model using intra-day numerical weather prediction (NWP) input data. Subsequently, probabilistic forecasts are generated based on Kernel density estimators (KDE) and Copula, describing the multivariate spatial dependencies for the marginal distributions of forecasting and approximation errors. Finally, a probabilistic power flow (PPF) using a linearized AC version is proposed, combining the benefits of high accuracy with high computational performance. To assess and quantify the overall advantages of this approach, a case study is carried out for an existing power system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.