COVID-19 manifestations in symptomatic patients can be in the form of pneumonia, acute respiratory syndrome, and multiple organ dysfunction as well. Renal complications, gastrointestinal dysfunctions, endocrine system disorders, myocardial dysfunction and arrhythmia, neurological dysfunctions, dermatological symptoms, hematological manifestations, and thromboinflammation are among the reported extrapulmonary complications. Moreover, the presence of coagulopathy, excessive and dysregulated immune responses, and autoimmunity by COVID-19 patients is considerable. The pathogenesis of infection entails the entry of the virus via receptors on cells, principally angiotensin-converting enzyme 2 receptors. Direct virus damage coupled with indirect effects of viral infection including thromboinflammation, dysfunction of the immune system, and dysregulation of the renin-angiotensin system leads to multiple organ failure. This review outlines the extrapulmonary organ-specific complications and their pathophysiology and epidemiology.
A high percentage of malignant gliomas are infected by human cytomegalovirus (HCMV), and the endogenous expression of HCMV genes and their products are found in these tumors. HCMV antigen expression and its implications in gliomagenesis have emerged as a promising target for adoptive cellular immunotherapy (ACT) strategies in glioblastoma multiforme (GB) patients. Since antigen-specific T cells in the tumor microenvironments lack efficient anti-tumor immune response due to the immunosuppressive nature of glioblastoma, CMV-specific ACT relies on in vitro expansion of CMV-specific CD8+ T cells employing immunodominant HCMV antigens. Given the fact that several hurdles remain to be conquered, recent clinical trials have outlined the feasibility of CMV-specific ACT prior to tumor recurrence with minimal adverse effects and a substantial improvement in median overall survival and progression-free survival. This review discusses the role of HCMV in gliomagenesis, disease prognosis, and recent breakthroughs in harnessing HCMV-induced immunogenicity in the GB tumor microenvironment to develop effective CMV-specific ACT.
It has been well established that the etiopathogenesis of diverse autoimmune diseases is rooted in the autoreactive immune cells’ excessively proliferative state and impaired apoptotic machinery. Survivin is an anti-apoptotic and mitotic factor that has sparked a considerable research interest in this field. Survivin overexpression has been shown to contribute significantly to the development of autoimmune diseases via autoreactive immune cell overproliferation and apoptotic dysregulation. Several microRNAs (miRNAs/miRs) have been discovered to be involved in survivin regulation, rendering the survivin-miRNA axis a perspective target for autoimmune disease therapy. In this review, we discuss the role of survivin as an immune regulator and a highly implicated protein in the pathogenesis of autoimmune diseases, the significance of survivin-targeting miRNAs in autoimmunity, and the feasibility of targeting the survivin-miRNA axis as a promising therapeutic option for autoimmune diseases.
The recent pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19) has introduced itself into the human population in the 21st century after the coronavirus diseases SARS-CoV and Middle East respiratory syndrome (MERS-CoV). Major investigations are underway worldwide in the search for pharmaceutical interventions for COVID-19 and many agents are administered in off-label routes. Several cases are under study to check or restrict clinical manifestations of COVID-19. According to the fact that the efficacy of some micro-nutrients like vitamins is proven to treat or prevent infectious diseases because of their antimicrobial and immunomodulatory activity, the potential role of vitamins in the COVID-19 treatment or prevention must be considered.
The successful outcomes of chimeric antigen receptor (CAR) T-cell therapy in treating hematologic cancers have increased the previously unprecedented excitement to use this innovative approach in treating various forms of human cancers. Although researchers have put a lot of work into maximizing the effectiveness of these cells in the context of solid tumors, few studies have discussed challenges and potential strategies to overcome them. Restricted trafficking and infiltration into the tumor site, hypoxic and immunosuppressive tumor microenvironment (TME), antigen escape and heterogeneity, CAR T-cell exhaustion, and severe life-threatening toxicities are a few of the major obstacles facing CAR T-cells. CAR designs will need to go beyond the traditional architectures in order to get over these limitations and broaden their applicability to a larger range of malignancies. To enhance the safety, effectiveness, and applicability of this treatment modality, researchers are addressing the present challenges with a wide variety of engineering strategies as well as integrating several therapeutic tactics. In this study, we reviewed the antigens that CAR T-cells have been clinically trained to recognize, as well as counterstrategies to overcome the limitations of CAR T-cell therapy, such as recent advances in CAR T-cell engineering and the use of several therapies in combination to optimize their clinical efficacy in solid tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.