Counting of single prion particles bound to a capture-antibody surface (surface-FIDA). Veterinary Microbiology, Elsevier, 2007, 123 (4) This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.A c c e p t e d M a n u s c r i p t Hitherto accredited prion tests use the PK resistance of PrP Sc , the pathogenic isoform 19 of the prion protein, as a marker for the disease. Because of variations in the amount of 20 disease-related aggregated PrP, which is not PK-resistant, these prion tests offer only limited 21 sensitivity. Therefore, a prion detection method that does not rely on PK digestion would 22 allow for the detection of both PK-resistant as well as PK-sensitive PrP Sc . Furthermore, single 23 particle counting is more sensitive than methods measuring an integrated signal. Our new test 24 system is based on dual-colour fluorescence correlation spectroscopy (FCS). This method 25
In a world where more people grow older aging-related neurodegeneration like Alzheimer's disease (AD) affects more and more people. Today, AD can be diagnosed with certainty only post mortem, detecting insoluble b-amyloid peptide (Ab) aggregates and neurofibrillary tangles in the patient's brain tissue. Aggregates consisting of Ab are a fundamental pathologic feature of AD. Today in many studies, concentrations of monomeric Ab in body fluids are investigated, especially for diagnostic purposes. Nevertheless, for the detection, quantitation and qualification of aggregated pathologic Ab forms, also in the course of aging, a highly sensitive detection assay system for aggregated Ab species is necessary. We developed an ultra-sensitive assay for the detection of aggregated protein species out of body fluids. This highly specific and sensitive assay uses confocal fluorescence spectroscopy methods and is sensitive enough to detect single aggregates. For the procedure, pathologic aggregates out of body fluids are immobilized on a glass chip, subsequently fluorescence labeled and detected via confocal spectroscopy. Actually, we are optimizing the assay in concerns of instrumentation (imaging) and microscopy high-resolution and even super-resolution methods. We are developing methods to analyze aggregates via super-resolution microscopy. Setups like PAINT (Point Accumulation for Imaging in Nanoscale Topography) or STORM (Stochastic Optical Reconstruction Microscopy) allow resolutions in nanometer-range. PAINT is based on replacing the point-spreadfunction (PSF) of a fluorophore by a point in the middle of a 2D gaussian fit. First measurements show resolutions of 30 nm. STORM is based on highaccuracy localization of photoswitchable fluorophores. During one imaging cycle, only a small part of the fluorophores is turned on. This allows a high accuracy in determining the fluorophore position by replacing the PSF. The fluorophore positions obtained from a series of imaging cycles can be used to reconstruct the whole image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.