The leishmaniases are neglected tropical diseases widespread throughout the globe, which are caused by protozoans from the genus Leishmania and are transmitted by infected phlebotomine flies. The development of a safe and effective vaccine against these diseases has been seen as the best alternative to control and reduce the number of cases. To support vaccine development, this work has applied an in silico approach to search for high potential peptide epitopes able to bind to different major histocompatibility complex Class I and Class II (MHC I and MHC II) molecules from different human populations. First, the predicted proteome of Leishmania braziliensis was compared and analyzed by modern linear programs to find epitopes with the capacity to trigger an immune response. This approach resulted in thousands of epitopes derived from 8,000 proteins conserved among different Leishmania species. Epitopes from proteins similar to those found in host species were excluded, and epitopes from proteins conserved between different Leishmania species and belonging to surface proteins were preferentially selected. The resulting epitopes were then clustered, to avoid redundancies, resulting in a total of 230 individual epitopes for MHC I and 2,319 for MHC II. These were used for molecular modeling and docking with MHC structures retrieved from the Protein Data Bank. Molecular docking then ranked epitopes based on their predicted binding affinity to both MHC I and II. Peptides corresponding to the top 10 ranked epitopes were synthesized and evaluated in vitro for their capacity to stimulate peripheral blood mononuclear cells (PBMC) from post-treated cutaneous leishmaniasis patients, with PBMC from healthy donors used as control. From the 10 peptides tested, 50% showed to be immunogenic and capable to stimulate the proliferation of lymphocytes from recovered individuals.
Cutaneous Leishmaniasis (CL) is a Neglected Tropical Disease characterized by skin ulcers caused by Leishmania spp. protozoans and there is no safe and effective vaccine to reduce its negative consequences. In a previous work by our group, we identified T cell epitopes of Leishmania (Viannia) braziliensis which stimulated patients’ T cells in vitro. In the present work, the peptides were tested as two pools for their ability to rescue memory T cells during natural infection by Leishmania. We analyzed the frequency of central memory (TCM, CD45RA-CD62L+) and effector memory (TEM, CD45RA + CD62L-) cells during active CL and post-treatment. In parallel, we investigated cell proliferation levels and the cytokines produced after stimulation. Interestingly, we observed higher frequencies (%) in CD4+ TEM during CL, and CD8+ TEM and CD8+ TCM during CL and post-treatment. Cell proliferation was increased, and a significant difference in expression was observed on T-bet and RORγT. Besides that, IFN-γ, IL-2, and IL-10 were detected in patient samples. Collectively, this dataset suggests that during CL there is an increase in the frequency of TCM and TEM, especially in the CD8 compartment. These results indicate a potentially immunogenic profile of the peptide pools, which can support the development of anti-Leishmania formulations.
Background: A safe and effective vaccine against human leishmaniasis still requires the identification of better antigens for immunization and adequate models to evaluate the immune response. To support vaccine development, this work tested the immunogenicity of 10 different peptides derived from the proteome of Leishmania braziliensis, which were selected by their in silico affinity to MHC complexes. Research design and Methods: Comparative cell proliferation assays were performed by culturing, in the presence of each peptide, PBMC cells from subclinical subjects (SC), cutaneous leishmaniasis patients with active disease (AD), post-treatment (PT) individuals, and healthy controls. Culture supernatants were then used for Th1, Th2, and Th17 cytokine measurements. Cells from selected PT samples were also used to assess the expression, by T cells, of the T-bet Th1 transcription factor. Results: A robust cell proliferation was observed for the SC group, for all the tested peptides. The levels of Th1 cytokines were peptide-dependent and had substantial variations between groups, where, for instance, IFN-γ and TNF levels were some of the highest, particularly on PT cultures, when compared to IL-2. On the other hand, Th2 cytokines displayed much less variation. IL-6 was the most abundant among all the evaluated cytokines while IL-4 and IL-10 could be found at much lower concentrations. IL-17 was also detected with variations in SC and AD groups. T-bet was up-regulated in CD4 + and CD8 + T cells from the PT group after stimulation with all peptides. Conclusions: The peptide epitopes can differentially stimulate cells from SC, AD, and PT individuals, leading to distinct immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.