The clinical relevance of nozzle-like strictures in upper parts of the internal jugular veins remains unclear. This study was aimed at understanding flow disturbances caused by such stenoses. Computational fluid dynamics software, COMSOL Multiphysics, was used. Two-dimensional computational domain involved stenosis at the beginning of modeled veins, and a flexible valve downstream. The material of the venous valve was considered to be hyperelastic. In the vein models with symmetric 2-leaflets valve without upstream stenosis or with minor 30% stenosis, the flow was undisturbed. In the case of major 60% and 75% upstream stenosis, centerline velocity was positioned asymmetrically, and areas of reverse flow and flow separation developed. In the 2-leaflet models with major stenosis, vortices evoking flow asymmetry were present for the entire course of the model, while the valve leaflets were distorted by asymmetric flow. Our computational fluid dynamics modeling suggests that an impaired outflow from the brain through the internal jugular veins is likely to be primarily caused by pathological strictures in their upper parts. In addition, the jugular valve pathology can be exacerbated by strictures located in the upper segments of these veins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.