Effective response to mammary gland infection depends on efficient early innate immune response. The desired response would be one that is sufficient to clear the infection with a rapid return to the production of high-quality milk and limited tissue damage. In this study, 43 early lactation cows were ranked based on the ability of their fibroblasts to produce IL-8 in response to Escherichia coli lipopolysaccharide. Subsequently, the effect of a low or high response phenotype on the response to E. coli mastitis was determined. Untreated fibroblasts produced no detectable IL-8, whereas the range of IL-8 production in response to LPS (100 ng/mL) was approximately 7-fold between the lowest and highest responding cultures. Similar patterns of between-cow variation were observed in fibroblast production of IL-8 and IL-6 in response to IL-1β and Pam2CSK4 (a synthetic diacylated lipopeptide ligand). Four low and 4 high responder cows were challenged in late lactation with intramammary infusion of E. coli. All cows developed clinical mastitis in the challenged quarters and all cows cleared the infection within 8 d. However, somatic cell count began to decline earlier in the low responder group, and milk BSA concentration (an indicator of tissue damage) was also lower in low responders compared with high responders. Milk production from the challenged quarter was markedly depressed in both groups, but returned toward prechallenge values earlier in low responder cows. Dermal fibroblast cells appear predictive of a cow's response to mastitis. In this study, the low responder phenotype was sufficient to contain an E. coli infection with a more rapid return to the production of high quality milk.
Staphylococcus aureus is a common cause of chronic mammary gland infections in dairy cattle. However, the inflammatory response and duration of infection following pathogen exposure is variable between individual animals. To investigate interanimal differences in immune response, dermal fibroblast cultures were established from skin biopsies collected from 50 early lactation Holstein cows. The fibroblasts ability to produce IL-8 in response to a 24-h treatment with a synthetic toll-like receptor 2/6 agonist (Pam2CSK4) was used to assign a response phenotype to the animals. Five high-responding and 5 low-responding animals were then selected for an intramammary challenge with S. aureus to evaluate differences in the inflammatory response, chronicity of infection, and development of antibodies to the pathogen. All animals exhibited clinical symptoms of mastitis at 24h postchallenge. Animals previously classified as high responders experienced a greater inflammatory response characterized by elevated levels of milk somatic cell count, IL-8, and BSA following the challenge compared with low responders. In addition, antibodies toward the challenge strain of S. aureus reached higher levels in whey from the challenged gland of high responders compared with low responders. Despite the antibody response, all 5 high responders were chronically infected for the 6-wk duration of the study, whereas 2 of the low responders cleared the infection, although 1 of these did become reinfected. The observed differences between animals classified as low and high responders based on their fibroblast responsiveness suggests that this cell type can be used to further examine the causes of interanimal variation in response to mammary infection.
BackgroundWe have previously found substantial animal-to-animal and age-dependent variation in the response of Holstein fibroblast cultures challenged with LPS. To expand on this finding, fibroblast cultures were established from dairy (Holstein) and beef (Angus) cattle and challenged with LPS to examine breed-dependent differences in the innate immune response. Global gene expression was measured by RNA-Seq, while an epigenetic basis for expression differences was examined by methylated CpG island recovery assay sequencing (MIRA-Seq) analysis.ResultsThe Holstein breed displayed a more robust response to LPS than the Angus breed based on RNA-Seq analysis of cultures challenged with LPS for 0, 2, and 8 h. Several immune-associated genes were expressed at greater levels (FDR < 0.05) in Holstein cultures including TLR4 at all time points and a number of pro-inflammatory genes such as IL8, CCL20, CCL5, and TNF following LPS exposure. Despite extensive breed differences in the transcriptome, MIRA-Seq unveiled relatively similar patterns of genome-wide DNA methylation between breeds, with an overall hypomethylation of gene promoters. However, by examining the genome in 3Kb windows, 49 regions of differential methylation were discovered between Holstein and Angus fibroblasts, and two of these regions fell within the promoter region (-2500 to +500 bp of the transcription start site) of the genes NTRK2 and ADAMTS5.ConclusionsFibroblasts isolated from Holstein cattle display a more robust response to LPS in comparison to cultures from Angus cattle. Different selection strategies and management practices exist between these two breeds that likely give rise to genetic and epigenetic factors contributing to the different immune response phenotypes.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2565-x) contains supplementary material, which is available to authorized users.
The innate immune response following experimental mastitis is quite variable between individual dairy cattle. An inflammatory response that minimizes collateral damage to the mammary gland while still effectively resolving the infection following pathogen exposure is beneficial to dairy producers. The ability of a lipopolysaccharide (LPS) exposure in early life to generate a low-responding phenotype and thus reduce the inflammatory response to a later-life LPS challenge was investigated in neonatal bull calves. Ten Holstein bull calves were randomly assigned to either an early life LPS (ELL) group (n=5) or an early life saline (ELS) group (n=5). At 7d of age, calves received either LPS or saline, and at 32d of age, all calves were challenged with an intravenous dose of LPS to determine the effect of the early life treatment (LPS or saline) on the immune response generated toward a subsequent LPS challenge. Dermal fibroblast and monocyte-derived macrophage cultures from each calf were established at age 20 and 27d, respectively, to model sustained effects from the early life LPS exposure on gene expression and protein production of components within the LPS response pathway. The ELL calves had greater levels of plasma IL-6 and tumor necrosis factor-α than the ELS calves following the early life LPS or saline treatments. However, levels of these 2 immune markers were similar between ELL and ELS calves when both groups were subsequently challenged with LPS. A comparison of the in vitro LPS responses of the ELL and ELS calves revealed similar patterns of protein production and gene expression following an LPS challenge of both dermal fibroblast and monocyte-derived macrophage cultures established from the treatment groups. Whereas an early life exposure to LPS did not result in a dampened inflammatory response toward a later LPS challenge in these neonatal bull calves, the potential that exposure to inflammation or stress in early life or in utero can create an offspring with a low-responding phenotype as an adult is intriguing and has been documented in rodents. Further work is needed to determine if an inflammatory exposure in utero in a dairy animal would result in a low-responding innate immune phenotype.
A syndrome in which white foci and granulopustular lesions appeared on the vaginal mucous membranes of Holstein cows in several dairy herds in Israel is described. During clinical and diagnostic investigations, Mycoplasma bovigenitalium was isolated from 11 of 20 clinical cases. Vaginal swabs taken from the same cows yielded three isolates of Mycoplasma canadense, which were all associated with the M bovigenitalium infection. Two isolates of small, round, non-enveloped viral particles were approximately 25 nm in diameter and characteristic of enteroviruses on negative-staining electron microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.