T lymphocytes play a critical role in cell-mediated immune responses. During activation, extracellular and intracellular signals alter T cell metabolism in order to meet the energetic and biosynthetic needs of a proliferating, active cell, but control of these phenomena is not well defined. Previous studies have demonstrated that signaling from the costimulatory receptor CD28 enhances glucose utilization via the phosphatidylinositol-3-kinase (PI3K) pathway. However, since CD28 ligation alone does not induce glucose metabolism in resting T cells, contributions from T cell receptor-initiated signaling pathways must also be important. We therefore investigated the role of mitogen-activated protein kinase (MAPK) signaling in the regulation of mouse T cell glucose metabolism. T cell stimulation strongly induces glucose uptake and glycolysis, both of which are severely impaired by inhibition of extracellular signal-regulated kinase (ERK), whereas p38 inhibition had a much smaller effect. Activation also induced hexokinase activity and expression in T cells, and both were similarly dependent on ERK signaling. Thus, the ERK signaling pathway cooperates with PI3K to induce glucose utilization in activated T cells, with hexokinase serving as a potential point for coordinated regulation.
In this report we demonstrate the outstanding advantages of multifunctional nanoplatforms for cancer-imaging and therapy. The non-toxic polyacrylamide (PAA) nanoparticles (size:18-25 nm) formulation drastically changed the pharmacokinetic profile of the 124I- labeled chlorophyll-a derivative (formulated in 10% ethanol in PBS) with a remarkable enhancement in tumor uptake, and significantly reduced uptake in spleen and liver. Among the various nanoformulations investigated, the 124I- labeled photosensitizer (dose: 0.6142 MBq), and the cyanine dye-nanoparticles (CD-NP) conjugate (dose 0.3 μmol/kg) in combination showed great potential for tumor imaging (PET/NIR fluorescence) in BALB/c mice bearing Colon26 tumors. Compared to free non-labeled photosensitizer, the corresponding PAA nanoformulation under similar treatment parameters showed a remarkable enhancement in long-term tumor cure by PDT (photodynamic therapy) and provides an opportunity to develop a single nanoplatform for tumor-imaging (PET/fluorescence) and phototherapy, a practical “See and Treat” approach.
The
in vitro and in vivo anticancer activity of iodinated photosensitizers
(PSs) with and without an erlotinib moiety was investigated in UMUC3
[epidermal growth factor (EGFR)-positive] and T24 (EGFR-low) cell
lines and tumored mice. Both the erlotinib-conjugated PSs 3 and 5 showed EGFR target specificity, but the position-3
erlotinib–PS conjugate 3 demonstrated lower photodynamic
therapy efficacy than the corresponding non-erlotinib analogue 1, whereas the conjugate 5 containing an erlotinib
moiety at position-17 of the PS showed higher tumor uptake and long-term
tumor cure (severe combined immunodeficient mice bearing UMUC3 tumors).
PS–erlotinib conjugates in the absence of light were ineffective
in vitro and in vivo, but robust apoptotic and necrotic cell death
was observed in bladder cancer cells after exposing them to a laser
light at 665 nm. In contrast to 18F-fluorodeoxyglucose,
a positron emission tomography agent, the position-17 erlotinib conjugate
(124I-analogue 6) showed enhanced UMUC3 tumor
contrast even at a low imaging dose of 15 μCi/mouse.
The tetrapyrrole structure of porphyrins used as photosentizing agents is thought to determine uptake and retention by malignant epithelial cancer cells. To assess the contribution of the oxidized state of individual rings to these cellular processes, bacteriochlorophyll a was converted into the ring "D" reduced 3-devinyl-3-[1-(1-hexyloxy)ethyl]pyropheophorbide-a (HPPH) and the corresponding ring "B" reduced isomer (iso-HPPH). The carboxylic acid analogs of both ring "B" and ring "D" reduced isomers showed several-fold higher accumulation into the mitochondria and endoplasmic reticulum by primary culture of human lung and head and neck cancer cells than the corresponding methyl ester analogs that localize primarily to granular vesicles and to a lesser extent to mitochondria. However, long-term cellular retention of these compounds exhibited an inverse relationship with tumor cells generally retaining better the methyl-ester derivatives. In vivo distribution and tumor uptake was evaluated in the isogenic model of BALB/c mice bearing Colon26 tumors using the respective C-labeled analogs. Both carboxylic acid derivatives demonstrated similar intracellular localization and long-term tumor cure with no significant skin phototoxicity. PDT-mediated tumor action involved vascular damage, which was confirmed by a reduction in blood flow and immunohistochemical assessment of damage to the vascular endothelium. The HPPH stereoisomers (epimers) showed identical uptake (in vitro& in vivo), intracellular retention and photoreaction.
Advances in in vivo stability and preferential tumor uptake of cancer nanomedicine are warranted for effective chemotherapy. Here, we describe a novel nanoformulation using an unconventional polymeric tubule-forming phospholipid, DCPC. We report that DCPC transitions to stable vesicles (LNPs) in the presence of PEGylated lipid (DSPE-PEG2000); the resulting DCPC:DSPE-PEG2000 LNPs efficiently included a hydrophobic PDT drug, HPPH. Remarkably, these LNPs incorporated unusually high DSPE-PEG2000 concentrations; LNP-HPPH and LNP-HPPH (10 & 20 mol% PEGylated lipid, respectively) exhibited >90% serum stability at 37 °C. Increased PEGylation in the LNPs correlated with enhanced tumor accumulation in intravenously injected HT29 tumor mouse xenographs. Colon-26 bearing BALB/c mice, intravenously injected with LNP-HPPH showed superior PDT efficacy and animal survival (no tumor recurrence up to 100 days) as compared to a formulation currently used in clinical trials. Taken together, we present a simple stealth binary lipid nanosystem with enhanced efficiency of tumor accumulation and superior therapeutic efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.