Summary Acute respiratory infections (ARI) are a common reason for seeking medical attention and the threat of pandemic influenza will likely add to these numbers. Using human viral challenge studies with live rhinovirus, respiratory syncytial virus, and influenza A, we developed peripheral blood gene expression signatures that distinguish individuals with symptomatic ARI from uninfected individuals with > 95% accuracy. We validated this “acute respiratory viral” signature - encompassing genes with a known role in host defense against viral infections - across each viral challenge. We also validated the signature in an independently acquired dataset for influenza A and classified infected individuals from healthy controls with 100% accuracy. In the same dataset, we could also distinguish viral from bacterial ARIs (93% accuracy). These results demonstrate that ARIs induce changes in human peripheral blood gene expression that can be used to diagnose a viral etiology of respiratory infection and triage symptomatic individuals.
Candida albicans is the leading fungal pathogen of humans, causing life-threatening disease in immunocompromised individuals. Treatment of candidiasis is hampered by the limited number of antifungal drugs whose efficacy is compromised by host toxicity, fungistatic activity, and the emergence of drug resistance. We previously established that the molecular chaperone Hsp90, which regulates the form and function of diverse client proteins, potentiates resistance to the azoles in C. albicans and in the model yeast Saccharomyces cerevisiae. Genetic studies in S. cerevisiae revealed that Hsp90's role in azole resistance is to enable crucial cellular responses to the membrane stress exerted by azoles via the client protein calcineurin. Here, we demonstrate that Hsp90 governs cellular circuitry required for resistance to the only new class of antifungals to reach the clinic in decades, the echinocandins, which inhibit biosynthesis of a critical component of the fungal cell wall. Pharmacological or genetic impairment of Hsp90 function reduced tolerance of C. albicans laboratory strains and resistance of clinical isolates to the echinocandins and created a fungicidal combination. Compromising calcineurin function phenocopied compromising Hsp90 function. We established that calcineurin is an Hsp90 client protein in C. albicans: reciprocal co-immunoprecipitation validated physical interaction; Hsp90 inhibition blocked calcineurin activation; and calcineurin levels were depleted upon genetic reduction of Hsp90. The downstream effector of calcineurin, Crz1, played a partial role in mediating calcineurin-dependent stress responses activated by echinocandins. Hsp90's role in echinocandin resistance has therapeutic potential given that genetic compromise of C. albicans HSP90 expression enhanced the efficacy of an echinocandin in a murine model of disseminated candidiasis. Our results identify the first Hsp90 client protein in C. albicans, establish an entirely new role for Hsp90 in mediating resistance to echinocandins, and demonstrate that targeting Hsp90 provides a promising therapeutic strategy for the treatment of life-threatening fungal disease.
Invasive fungal infections are a leading cause of mortality among immunocompromised individuals. Treatment is notoriously difficult with the limited armamentarium of antifungal drugs, whose efficacy is compromised by host toxicity, a limited activity spectrum, or the emergence of drug resistance. We previously established that the molecular chaperone Hsp90 enables the emergence and maintenance of fungal drug resistance. For the most prevalent fungal pathogen of humans, Candida albicans, Hsp90 mediates resistance to azoles, which inhibit ergosterol biosynthesis and are the most widely deployed antifungals in the clinic. For the emerging opportunistic pathogen Aspergillus terreus, Hsp90 is required for basal resistance to echinocandins, which inhibit (1, 3)-glucan synthesis and are the only new class of antifungals to reach the clinic in decades. Here, we explore the therapeutic potential of Hsp90 inhibitors in fungal disease using a tractable host-model system, larvae of the greater wax moth Galleria mellonella, and a murine model of disseminated disease. Combination therapy with Hsp90 inhibitors that are well tolerated in humans and an azole rescued larvae from lethal C. albicans infections. Combination therapy with an Hsp90 inhibitor and an echinocandin rescued larvae from infections with the most lethal mold, Aspergillus fumigatus. In a murine model of disseminated candidiasis, genetic compromise of C. albicans HSP90 expression enhanced the therapeutic efficacy of an azole. Thus, harnessing Hsp90 provides a much-needed strategy for improving the treatment of fungal disease because it enhances the efficacy of existing antifungals, blocks the emergence of drug resistance, and exerts broadspectrum activity against diverse fungal pathogens.antifungal ͉ Aspergillus fumigatus ͉ azole ͉ Candida albicans ͉ drug resistance
Summary Background Hsp90 is an environmentally contingent molecular chaperone that influences the form and function of diverse regulators of cellular signaling. Hsp90 potentiates the evolution of fungal drug resistance by enabling crucial cellular stress responses. Here we demonstrate that in the leading fungal pathogen of humans, Candida albicans, Hsp90 governs cellular circuitry required not only for drug resistance but also for the key morphogenetic transition from yeast to filamentous growth that is crucial for virulence. This transition is normally regulated by environmental cues, such as exposure to serum, that are contingent upon elevated temperature to induce morphogenesis. The basis for this temperature dependence has remained enigmatic. Results We show that compromising Hsp90 function pharmacologically or genetically induces a transition from yeast to filamentous growth in the absence of external cues. Elevated temperature relieves Hsp90-mediated repression of the morphogenetic program. Hsp90 regulates morphogenetic circuitry by repressing Ras1-PKA signaling. Modest Hsp90 compromise enhances the phenotypic effects of activated Ras1 signaling while deletion of positive regulators of the Ras1-PKA cascade blocks the morphogenetic response to Hsp90 inhibition. Consistent with the requirement for morphogenetic flexibility for virulence, depletion of C. albicans Hsp90 attenuates virulence in a murine model of systemic disease. Conclusions Hsp90 governs the integration of environmental cues with cellular signaling to orchestrate fungal morphogenesis and virulence, suggesting new therapeutic strategies for life-threatening infectious disease. Hsp90’s capacity to govern a key developmental program in response to temperature change provides a new mechanism that complements the elegant repertoire that organisms utilize to sense temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.