Post-translational acetylation of lysines is most extensively studied in histones, but this modification is also found in many other proteins and is implicated in a wide range of biological processes in both the cell nucleus and the cytoplasm. Like phosphorylation, acetylation patterns and levels are often altered in cancer, therefore small molecule inhibition of enzymes that regulate acetylation and deacetylation offers much potential for inhibiting cancer cell growth, as does disruption of interactions between acetylated residues and ‘reader’ proteins. For more than a decade now, histone deacetylase (HDAC) inhibitors have been investigated for their ability to increase acetylation and promote expression of tumor suppressor genes. However, emerging evidence suggests that acetylation can also promote cancer, in part by enhancing the functions of oncogenic transcription factors. In this review we focus on how acetylation of both histone and non-histone proteins may drive cancer, and we will discuss the implications of such changes on how patients are assigned to therapeutic agents. Finally, we will explore what the future holds in the design of small molecule inhibitors for modulation of levels or functions of acetylation states.
Acetyl-CoA is a central metabolite used for lipid synthesis in the cytosol and histone acetylation in the nucleus, among other pathways. The two major precursors to acetyl-CoA in the nuclear-cytoplasmic compartment are citrate and acetate, which are processed to acetyl-CoA by ATP-citrate lyase (ACLY) and acyl-CoA synthetase short-chain 2 (ACSS2), respectively. While some evidence has suggested the existence of additional routes to nuclear-cytosolic acetyl-CoA, such pathways remain poorly defined. To investigate this, we generated cancer cell lines lacking both ACLY and ACSS2. Unexpectedly, and in contrast to observations in fibroblasts, ACLY and ACSS2 double knockout (DKO) cancer cells remain viable and proliferate, maintain pools of cytosolic acetyl-CoA, and are competent to acetylate proteins in both cytosolic and nuclear compartments. Using stable isotope tracing, we show that both glucose and fatty acids feed acetyl-CoA pools and histone acetylation in DKO cells. Moreover, we provide evidence for the carnitine shuttle and carnitine acetyltransferase (CrAT) as a substantial pathway to transfer two-carbon units from mitochondria to cytosol independent of ACLY. Indeed, in the absence of ACLY, glucose can feed fatty acid synthesis in a carnitine responsive and CrAT-dependent manner. This work defines a carnitine-facilitated route to produce nuclear-cytosolic acetyl-CoA, shedding light on the intricate regulation and compartmentalization of acetyl-CoA metabolism.
Overexpression of the MYC oncoprotein is an initiating step in the formation of several cancers. MYC frequently recruits chromatin-modifying complexes to DNA to amplify the expression of cancer-promoting genes, including those regulating cell cycle, proliferation, and metabolism, yet the roles of specific modifiers in different cancer types are not well defined. Here, we show that GCN5 is an essential coactivator of cell-cycle gene expression driven by MYC overexpression and that deletion of Gcn5 delays or abrogates tumorigenesis in the Eμ-Myc mouse model of B-cell lymphoma. Our results demonstrate that Gcn5 loss impacts both expression and downstream functions of Myc. Significance: Our results provide important proof of principle for Gcn5 functions in formation and progression of Myc-driven cancers, suggesting that GCN5 may be a viable target for development of new cancer therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.