There is always a desire for defect-free software in order to maintain software quality for customer satisfaction and to save testing expenses. As a result, we examined various known ML techniques and optimized ML techniques on a freely available data set. The purpose of the research was to improve the model performance in terms of accuracy and precision of the dataset compared to previous research. As previous investigations show, the accuracy can be further improved. For this purpose, we employed K-means clustering for the categorization of class labels. Further, we applied classification models to selected features. Particle Swarm Optimization is utilized to optimize ML models. We evaluated the performance of models through precision, accuracy, recall, f-measure, performance error metrics, and a confusion matrix. The results indicate that all the ML and optimized ML models achieve the maximum results; however, the SVM and optimized SVM models outperformed with the highest achieved accuracy, 99% and 99.80%, respectively. The accuracy of NB, Optimized NB, RF, Optimized RF and ensemble approaches are 93.90%, 93.80%, 98.70%, 99.50%, 98.80% and 97.60, respectively. In this way, we achieve maximum accuracy compared to previous studies, which was our goal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.