Background: Lesion studies have shown distinct roles for the hippocampus, with the dorsal subregion being involved in processing of spatial information and memory, and the ventral aspect coding for emotion and motivational behaviour. However, its structural connectivity with the subdivisions of the prefrontal cortex (PFC), the executive area of the brain that also has various distinct functions, has not been fully explored, especially in the Malaysian population. Methods: We performed diffusion magnetic resonance imaging with probabilistic tractography on four Malay males to parcellate the hippocampus according to its relative connection probability to the six subdivisions of the PFC. Results: Our findings revealed that each hippocampus showed putative connectivity to all the subdivisions of PFC, with the highest connectivity to the orbitofrontal cortex (OFC). Parcellation of the hippocampus according to its connection probability to the six PFC subdivisions showed variability in the pattern of the connection distribution and no clear distinction between the hippocampal subregions. Conclusion: Hippocampus displayed highest connectivity to the OFC as compared to other PFC subdivisions. We did not find a unifying pattern of distribution based on the connectivity- based parcellation of the hippocampus.
BackgroundImpairment in cognitive function is a recognized outcome of traumatic brain injury (TBI). However, the degree of impairment has variable relationship with TBI severity and time post injury. The underlying pathology is often due to diffuse axonal injury that has been found even in mild TBI. In this study, we examine the state of white matter putative connectivity in patients with non-severe TBI in the subacute phase, i.e., within 10 weeks of injury and determine its relationship with neuropsychological scores.MethodsWe conducted a case-control prospective study involving 11 male adult patients with non-severe TBI and an age-matched control group of 11 adult male volunteers. Diffusion MRI scanning and neuropsychological tests were administered within 10 weeks post injury. The difference in fractional anisotropy (FA) values between the patient and control groups was examined using tract-based spatial statistics. The FA values that were significantly different between patients and controls were then correlated with neuropsychological tests in the patient group.ResultsSeveral clusters with peak voxels of significant FA reductions (p < 0.05) in the white matter skeleton were seen in patients compared to the control group. These clusters were located in the superior fronto-occipital fasciculus, superior longitudinal fasciculus, uncinate fasciculus, and cingulum, as well as white matter fibers in the area of genu of corpus callosum, anterior corona radiata, superior corona radiata, anterior thalamic radiation and part of inferior frontal gyrus. Mean global FA magnitude correlated significantly with MAVLT immediate recall scores while matrix reasoning scores correlated positively with FA values in the area of right superior fronto-occipital fasciculus and left anterior corona radiata.ConclusionThe non-severe TBI patients had abnormally reduced FA values in multiple regions compared to controls that correlated with several measures of executive function during the sub-acute phase of TBI.
Introduction: Studies show that adolescents are more reward sensitive compared to other age groups. The nucleus accumbens (NAcc) has been identified as a key brain area involved in reward through its connectivity to other reward-related brain areas. Our study aimed to characterise the white matter structural connectivity of nucleus accumbens with brain areas that are most often associated with reward in female adolescents. Methods: Fifteen healthy female Malay adolescents were recruited and underwent diffusion-weighted brain scanning. Two behaviour scales were also given to verify typical reward responsiveness. Then, probabilistic tractography and NAcc segmentation were performed on the data using FMRIB Software Library (FSL). Probabilistic tractography was performed to determine the relative connection probability of nucleus accumbens (NAcc) to areas shown to be associated with reward, namely amygdala, anterior cingulate cortex (ACC), medial orbitofrontal cortex (mOFC), hippocampus, ventrolateral prefrontal cortex (vlPFC) and dorsolateral prefrontal cortex (dlPFC). Connectivity-based segmentation of NAcc was performed to determine the spatial distribution of its connectivity with the target brain areas according to the highest connection probability. Results: The highest relative connection probability was found between NAcc to mOFC, while the NAcc parcellation showed the widest distribution of connection to mOFC compared to the other five targets on both sides of the brain. Conclusion: Our findings demonstrated the strongest structural connectivity and widest distribution between NAcc and mOFC compared with other brain areas related to reward. This study’s findings could be used as baseline to compare with people with atypical reward circuit problems.
Objectives: This study aimed to investigate the probabilistic connectivity between the thalamus and motor areas of the cerebral cortex in spastic cerebral palsy (SCP). We explored the integrity of motor tracts between the thalamus and cerebral cortex by quantifying the thalamic probabilistic connectivity with motor cortices (namely primary motor cortex, supplementary motor area, and premotor cortex) in SCP using diffusion MRI. The current study also parcellated the thalamus according to its connectivity to the three motor cortices in healthy control and SCP. Methods: Probabilistic tractography was performed on secondary diffusion MRI data of eight SCP patients (mean age 11.9 years old) and ten healthy controls. The connection probability index, an indirect indicator of white matter integrity, was measured between the thalamus to three areas of the motor cortex; primary motor, premotor and supplementary motor. The thalamus was further parcellated according to its connection probability with the motor cortices. Results: The pattern of thalamocortical connectivity in cerebral palsy was found to be varied and mainly complied with the patient's clinical presentation. In comparison with controls, the SCP patients showed either lower or higher connection probabilities to the motor cortices. A striking feature of thalamic parcellation in SCP was the presence of a cluster with a positive connection to the supplementary motor area. Conclusion: Our findings suggest that the thalamocortical connectivity in SCP was different from healthy individuals and largely follows the clinical manifestation. There was also evidence of neuroplasticity serving as a compensatory mechanism for the motor deficit in patients with SCP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.