To date, numerous studies have demonstrated the fundamental role played by optic flow in the control of goal-directed displacement tasks in insects. Optic flow was first introduced by Gibson as part of their ecological approach to perception and action. While this theoretical approach (as a whole) has been demonstrated to be particularly suitable for the study of goal-directed displacements in humans, its usefulness in carrying out entomological field studies remains to be established. In this review we would like to demonstrate that the ecological approach to perception and action could be relevant for the entomologist community in their future investigations. This approach could provide a conceptual and methodological framework for the community in order to: (i) take a critical look at the research carried out to date, (ii) develop rigorous and innovative experimental protocols, and (iii) define scientific issues that push the boundaries of the current scientific field. After a concise literature review about the perceptual control of displacement in insects, we will present the framework proposed by Gibson and suggest its added value for carrying out research in the field of behavioral ecology in insects.
How do bees perceive altitude changes so as to produce safe displacements within their environment? It has been proved that humans use invariants, but this concept remains little-known within the entomology community. The use of a single invariant, the optical speed rate of change, has been extensively demonstrated in bees in a ground-following task. Recently, it has been demonstrated that another invariant, the splay angle rate of change, could also be used by bees to adjust their altitude. This study aims to understand how bees use these invariants when they are available simultaneously. This issue has been addressed using an experimental setup providing discordant information to bees. We have shown that when the two invariants were available, bees performed ground-following tasks relying primarily on optical speed rate of change. Conversely, when optical speed rate of change was less easily accessible, splay angle rate of change was prioritized, unless the bees perceive danger. Taken together, these results illustrate how the joint use of several invariants allows bees to produce adaptive behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.