ObjectiveTo assess the effectiveness of the NHS Cancer Plan (2000) and subsequent national cancer policy initiatives in improving cancer survival and reducing socioeconomic inequalities in survival in England.DesignPopulation based cohort study.SettingEngland.PopulationMore than 3.5 million registered patients aged 15-99 with a diagnosis of one of the 24 most common primary, malignant, invasive neoplasms between 1996 and 2013.Main outcome measuresAge standardised net survival estimates by cancer, sex, year, and deprivation group. These estimates were modelled using regression model with splines to explore changes in the cancer survival trends and in the socioeconomic inequalities in survival.ResultsOne year net survival improved steadily from 1996 for 26 of 41 sex-cancer combinations studied, and only from 2001 or 2006 for four cancers. Trends in survival accelerated after 2006 for five cancers. The deprivation gap observed for all 41 sex-cancer combinations among patients with a diagnosis in 1996 persisted until 2013. However, the gap slightly decreased for six cancers among men for which one year survival was more than 65% in 1996, and for cervical and uterine cancers, for which survival was more than 75% in 1996. The deprivation gap widened notably for brain tumours in men and for lung cancer in women.ConclusionsLittle evidence was found of a direct impact of national cancer strategies on one year survival, and no evidence for a reduction in socioeconomic inequalities in cancer survival. These findings emphasise that socioeconomic inequalities in survival remain a major public health problem for a healthcare system founded on equity.
Acquiring real-world evidence is crucial to support health policy, but observational studies are prone to serious biases. An approach was recently proposed to overcome confounding and immortal-time biases within the emulated trial framework. This tutorial provides a step-by-step description of the design and analysis of emulated trials, as well as R and Stata code, to facilitate its use in practice. The steps consist in: (i) specifying the target trial and inclusion criteria; (ii) cloning patients; (iii) defining censoring and survival times; (iv) estimating the weights to account for informative censoring introduced by design; and (v) analysing these data. These steps are illustrated with observational data to assess the benefit of surgery among 70–89-year-old patients diagnosed with early-stage lung cancer. Because of the severe unbalance of the patient characteristics between treatment arms (surgery yes/no), a naïve Kaplan-Meier survival analysis of the initial cohort severely overestimated the benefit of surgery on 1-year survival (22% difference), as did a survival analysis of the cloned dataset when informative censoring was ignored (17% difference). By contrast, the estimated weights adequately removed the covariate imbalance. The weighted analysis still showed evidence of a benefit, though smaller (11% difference), of surgery among older lung cancer patients on 1-year survival. Complementing the CERBOT tool, this tutorial explains how to proceed to conduct emulated trials using observational data in the presence of immortal-time bias. The strength of this approach is its transparency and its principles that are easily understandable by non-specialists.
Comorbidities play an important role in whether patients undergo surgery, but do not completely explain the socioeconomic difference observed in early stage patients. Future work investigating access to and distance from specialist hospitals, as well as patient perceptions and patient choice in receiving surgery, could help disentangle these persistent socioeconomic inequalities.
BackgroundColorectal cancer incidence in the UK and other high-income countries has been increasing rapidly among young adults. This is the first analysis of colorectal cancer incidence trends by sub-site and socioeconomic deprivation in young adults in a European country.MethodsWe examined age-specific national trends in colorectal cancer incidence among all adults (20–99 years) diagnosed during 1971–2014, using Joinpoint regression to analyse data from the population-based cancer registry for England. We fitted a generalised linear model to the incidence rates, with a maximum of two knots. We present the annual percentage change in incidence rates in up to three successive calendar periods, by sex, age, deprivation and anatomical sub-site.ResultsAnnual incidence rates among the youngest adults (20–39 years) fell slightly between 1971 and the early 1990s, but increased rapidly from then onwards. Incidence Rates (IR) among adults 20–29 years rose from 0.8 per 100,000 in 1993 to 2.8 per 100,000 in 2014, an average annual increase of 8%. An annual increase of 8.1% was observed for adults aged 30–39 years during 2005–2014. Among the two youngest age groups (20–39 years), the average annual increase for the right colon was 5.2% between 1991 and 2010, rising to 19.4% per year between 2010 (IR = 1.2) and 2014 (IR = 2.5). The large increase in incidence rates for cancers of the right colon since 2010 were more marked among the most affluent young adults. Smaller but substantial increases were observed for cancers of the left colon and rectum. Incidence rates in those aged 50 years and older remained stable or decreased over the same periods.ConclusionsDespite the overall stabilising trend of colorectal cancer incidence in England, incidence rates have increased rapidly among young adults (aged 20–39 years). Changes in the prevalence of obesity and other risk factors may have affected the young population but more research is needed on the cause of the observed birth cohort effect. Extension of mass screening may not be justifiable due to the low number of newly diagnosed cases but clinicians should be alert to this trend.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.